456
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparing actual evapotranspiration estimations by METRIC to in-situ water balance measurements over an irrigated field in Turkey

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1162-1183 | Received 13 Sep 2022, Accepted 27 Feb 2023, Published online: 19 May 2023

References

  • Aksu, H., and Arikan, A., 2017. Satellite-based estimation of actual evapotranspiration in the Buyuk Menders Bain, Turkey. Hydrology Research, 48 (2), 559–570. doi:10.2166/nh.2016.226
  • Allen, R.G., et al., 1998. Crop evapotranspiration – guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, Italy, FAO.
  • Allen, R.G., et al., 2007b. Satellite-based energy balance for mapping evapotranspiration with internalized calibration, METRIC (applications). Journal of Irrigation and Drainage Engineering, 133, 395–406. doi:10.1061/(ASCE)0733-9437(2007)133:4(395)
  • Allen, R.G., et al., 2011a. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25, 4011–4027. doi:10.1002/hyp.8408
  • Allen, R.G., et al., 2011b. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899–920. doi:10.1016/j.agwat.2010.12.015
  • Allen, R.G., et al., 2013. Sensitivity of landsat-scale energy balance to aerodynamic variability in mountains and complex terrain. JAWRA Journal of the American Water Resources Association, 49 (3), 592–604. doi:10.1111/jawr.12055
  • Allen, R.G., Tasumi, M., and Morse, A., 2005. Satellite-based evapotranspiration by METRIC and Landsat for western states water management. US Bureau of reclamation evapotranspiration workshop, Alaska, USA, 8–10.
  • Allen, R.G., Tasumi, M., and Trezza, R., 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration, METRIC (model). Journal of Irrigation and Drainage Engineering, 133, 380–394. doi:10.1061/(ASCE)0733-9437(2007)133:4(380)
  • Anderson, M.C., et al., 2012. Remote sensing of environment use of landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65. doi:10.1016/j.rse.2011.08.025
  • Bastiaanssen, W.G.M., et al., 1998a. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Journal of Hydrology, 212– 213, 198–212. doi:10.1016/S0022-1694(98)00253-4
  • Bastiaanssen, W.G.M., et al., 1998b. A surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology, 212–213, 213–229. doi:10.1016/S0022-1694(98)00254-6
  • Belgiu, M., and Csillik, O., 2018. Remote sensing of environment Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. doi:10.1016/j.rse.2017.10.005
  • Biggs, T.W., Marshall, M., and Messina, A., 2016. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: automation and methods comparison. Water Resources Research, 52, 7311–7326. doi:10.1002/2016WR019107
  • Boken, V.K., et al., 2004. Agricultural water use estimation using geospatial modeling and a geographic information system. Agricultural Water Management, 67 (3), 185–199. doi:10.1016/j.agwat.2004.01.003
  • Carrasco-Benavides, M., et al., 2014. Parameterization of the satellite-based model (METRIC) for the estimation of instantaneous surface energy balance components over a drip-irrigated vineyard. Remote Sensing, 6 (11), 11342–11371. doi:10.3390/rs61111342
  • Cetin, M., et al., 2020a. Analysis of irrigation performance in water resources planning and management: a case study. Fresenius Environmental Bulletin (FEB), 29 (5), 3409–3414.
  • Cetin, M., 2020b. Agricultural water use. In: N.B. Harmancioglu and D. Altinbilek, eds. Water resources of Turkey, world water resources. Vol. 2. Cham, Switzerland: Springer Nature, 257–302. doi:10.1007/978-3-030-11729-0_9
  • Courault, D., Seguin, B., and Olioso, A., 2005. Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation and Drainage Systems, 19, 223–249. doi:10.1007/s10795-005-5186-0
  • Daly, C., et al., 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28 (15), 2031–2064. doi:10.1002/joc.1688
  • Defourny, P., et al., 2019. Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment, 221, 551–568. doi:10.1016/j.rse.2018.11.007
  • Gowda, P.H., et al., 2008. ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26 (3), 223–237. doi:10.1007/s00271-007-0088-6
  • He, R., et al., 2017. Evapotranspiration estimate over an almond orchard using Landsat satellite observations. Remote Sensing, 9 (5), 436. doi:10.3390/rs9050436
  • Hirich, A., Choukr-Allah, R., and Ragab, R., 2020. Emerging research in alternative crops. Environment & Policy. Switzerland: Springer Nature, 376.
  • Ibrikci, H., et al., 2015. Irrigation-induced nitrate losses assessed in a Mediterranean irrigation district. Agricultural Water Management, 148, 223–231. doi:10.1016/j.agwat.2014.10.007
  • Jaafar, H.H., and Ahmad, F.A., 2020. Remote sensing of environment time series trends of landsat-based ET using automated calibration in METRIC and SEBAL : the Bekaa Valley, Lebanon. Remote Sensing of Environment, 244, 1. doi:10.1016/j.rse.2018.12.033
  • Jiang, Y., et al., 2020. Large-scale and high-resolution crop mapping in China using sentinel-2 satellite imagery. Agriculture, 10, 433. doi:10.3390/agriculture10100433
  • Karnez, E., 2010. Evaluation of nitrogen budget inputs and outputs in wheat and corn growing areas in lower. Thesis (PhD). Çukurova University, Institute of Natural and Applied Sciences, Soil Science and Plant Nutrition. (In Turkish).
  • Koc, D.L., and Kanber, R., 2020. Determination of evapotranspiration for wheat by using bowen ratio energy balance method. KSU Tarim ve Doga Dergisi, 3 (2), 544–553. (In Turkish). doi:10.18016/ksutarimdoga.vi.597980
  • Kustas, W.P., Daughtry, C.S.T., and Van Oevelen, P.J., 1993. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices. Remote Sensing of Environment, 46 (93), 319–330. doi:10.1016/0034-4257(93)90052-Y
  • Landerer, F.W., and Swenson, S.C., 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48, W04531. doi:10.1029/2011WR011453
  • Liebert, R., et al., 2016. Reduced evapotranspiration from leaf beetle induced tamarisk defoliation in the Lower Virgin River using satellite-based energy balance. Ecohydrology, 9 (1), 179–193. doi:10.1002/eco.1623
  • Loucks, D.P., and Van Beek, E., 2005. Water resources systems planning and management. Studies and Reports in Hydrology, 1–680. UNESCO.
  • Madugundu, R., et al., 2017. Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrology and Earth System Sciences; Katlenburg-Lindau, 21 (12). doi:10.5194/hess-21-6135-2017
  • Mahlayeye, M., Darvishzadeh, R., and Nelson, A., 2022. Cropping patterns of annual crops: a remote sensing review. Remote Sensing, 14, 2404. doi:10.3390/rs14102404
  • Mokhtari, A., et al., 2021. Actual evapotranspiration from UAV images : a multi-sensor data fusion actual evapotranspiration from UAV images : a multi-sensor data fusion approach. Remote Sensing, 13 (12), 2315. doi:10.3390/rs13122315
  • Novelli, A., et al., 2016. Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Computational science and its applications – ICCSA 2016. ICCSA 2016. Lecture notes in computer science. Vol. 9787, 420–432. Cham: Springer, doi:10.1007/978-3-319-42108-7_32
  • Numata, I., et al., 2017. Evaluation of landsat-based METRIC modeling to provide high-spatial resolution evapotranspiration estimates for amazonian forests. Remote Sensing, 9, 46. doi:10.3390/rs9010046
  • Olmedo, G.F., Ortega-farias, S., and Fonseca-luengo, D., 2016. Tools and functions to estimate actual evapotranspiration using land water : tools and functions to estimate actual evapotranspiration using land surface energy balance models. The R Journal, 8, 352. doi:10.32614/RJ-2016-051
  • Ozcan, H., Cetin, M., and Diker, K., 2003. Monitoring and assessment of land use status by GIS. Environmental Monitoring and Assessment, 87, 33–45. doi:10.1023/A:1024433812336
  • Ramírez-Cuesta, J.M., et al., 2018. Impact of the spatial resolution on the energy balance components on an open canopy olive orchard. The International Journal of Applied Earth Observation and Geoinformation, 74, 88–102. doi:10.1016/j.jag.2018.09.001
  • Rouse, J.W., et al., 1974. Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. Final Rep. RSC 1978-4, Santana, R.C., Barros, N.F., Leite, H.G, Remote Sensing Center. Texas A&M Univ., College Station.
  • Sawadogo, A., et al., 2020. Comparative analysis of the pySEBAL model and lysimeter for estimating actual evapotranspiration of the soybean crop in Adana. International Journal of Engineering and Geosciences (IJEG), 5 (2), 60–65. Turkey. doi:10.26833/ijeg.573503
  • Selek, B., et al., 2016. Seyhan Dam, Turkey, and climate change adaptation strategies. Chapter 10 in increasing resilience to climate variability and change. In: C. Tortajada, ed. Water resources development and management. Springer Science Business Media Singapore, 205–226. doi:10.1007/978-981-10-1914-2_10
  • Senay, G.B., et al., 2016. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment, 185, 171–185. doi:10.1016/j.rse.2015.12.043
  • Sonobe, R., et al., 2017. Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GIScience & Remote Sensing, 54, 6, 918–938. doi:10.1080/15481603.2017.1351149
  • Steduto, P., 2000. Plant nutrient management under pressurized irrigation systems in the Mediterranean Region: crop water requirements. In: J. Ryan, ed. Plant nutrient management under pressurized irrigation systems in the Mediterranean Region. Proceedings of the International Fertigation Workshop organized by the World Phosphate Institute (IMPHOS), 25–27 April 1999. Aleppo: ICARDA, 400
  • Su, Z., 2002. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85–100. doi:10.5194/hess-6-85-2002
  • Sun, J.F., et al., 2004. Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology, 80, 37–48.
  • Swenson, S., and Wahr, J., 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33, L08402. doi:10.1029/2005GL025285
  • TAGEM-DSI, 2017. Plant water consumption of irrigated plants in Turkiye. Ankara, Turkiye: The Republic of Turkiye, Ministry of Agriculture and Forestry, General Directorates of Agricultural Research and Policies (TAGEM) and State Hydraulic Works (DSI), Published by TAGEM. 590. (In Turkish).
  • Tapley, B.D., et al., 2004a. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31, L09607. doi:10.1029/2004GL019920
  • Tasumi, M., 2003. Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. thesis. University of Idaho.
  • Tasumi, M., 2019. Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226 (2019), 105805. doi:10.1016/j.agwat.2019.105805
  • Trezza, R., Allen, R.G., and Tasumi, M., 2013. Estimation of actual evapotranspiration alongthe Middle Rio Grande of New Mexico using MODIS and Landsat imagery with the METRIC model. Remote Sensing, 5 (10), 5397–5423. doi:10.3390/rs5105397
  • Unlu, M., Kanber, R., and Kapur, B., 2010. Comparison of soybean evapotranspiration measured by weighing lysimeter and Bowen ratio-energy balance methods. African Journal of Biotechnology, 9 (30), 4700–4713.
  • Whyte, A., Ferentinos, K.P., and Petropoulos, G.P., 2018. A new synergistic approach for monitoring wetlands using Sentinels −1 and 2 data with object-based machine learning algorithms. Environmental Modelling and Software, 104, 40–54. doi:10.1016/j.envsoft.2018.01.023
  • Zalnezhad, A., et al., 2022. Comparing performance of ANN and SVM methods for regional flood frequency analysis in South-East Australia. Water, 14, 3323. doi:10.3390/w14203323
  • Zheng, B., et al., 2015. International journal of applied earth observation and geoinformation a support vector machine to identify irrigated crop types using time-series Landsat NDVI data. The International Journal of Applied Earth Observation and Geoinformation, 34, 103–112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.