138
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the vulnerability of hybrid coastal aquifers: application of multi-attribute decision-making and optimization models

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1095-1108 | Received 14 Jul 2022, Accepted 06 Mar 2023, Published online: 12 May 2023

References

  • Abdalla, O.A. and Al-Rawahi, A.S., 2013. Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: example of AlKhod, Oman. Environmental Earth Sciences, 69 (6), 1951–1962. doi:10.1007/s12665-012-2028-x.
  • Akbarpour, S. and Niksokhan, M.H., 2018. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment. Environmental Monitoring and Assessment, 190 (10), 1–16. doi:10.1007/s10661-018-6953-3.
  • Al-Hashmi, S., et al., 2020. Application of groundwater flow model in assessing aquifer layers interaction in arid catchment area. International Journal of Environmental Science and Technology, 17 (11), 4577–4588. doi:10.1007/s13762-020-02805-x.
  • Amarni, N., et al., 2020. Mapping of the vulnerability to marine intrusion “in coastal Cherchell aquifer, Central Algeria” using the GALDIT method. Groundwater for Sustainable Development, 11, 100481. doi:10.1016/j.gsd.2020.100481.
  • Barzegar, R., et al., 2021. Improving GALDIT-based groundwater vulnerability predictive mapping using coupled resampling algorithms and machine learning models. Journal of Hydrology, 598, 126370. doi:10.1016/j.jhydrol.2021.126370.
  • Bera, K., Newcomer, M.E., and Banik, P., 2022. Groundwater recharge site suitability analysis through multi-influencing factors (MIF) in West Bengal dry-land areas, West Bengal, India. Acta Geochim, 41, 1030–1048. doi:10.1007/s11631-022-00559-6.
  • Bordbar, M., et al., 2020. Meta-heuristic algorithms in optimizing GALDIT framework: a comparative study for coastal aquifer vulnerability assessment. Journal of Hydrology, 585, 124768. doi:10.1016/j.jhydrol.2020.124768.
  • Bordbar, M., et al., 2021a. A hybrid approach based on statistical method and meta-heuristic optimization algorithm for coastal aquifer vulnerability assessment. Environmental Modeling and Assessment, 26 (3), 325–338. doi:10.1007/s10666-021-09754-w.
  • Bordbar, M., et al., 2021b. Improving the coastal aquifers’ vulnerability assessment using SCMAI ensemble of three machine learning approaches. Natural Hazards, 110, 1799–1820.
  • Bordbar, M., Neshat, A., and Javadi, S., 2019a. A new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environmental Science and Pollution Research, 26 (21), 21808–21827. doi:10.1007/s11356-019-04853-4.
  • Bordbar, M., Neshat, A., and Javadi, S., 2019b. Modification of the GALDIT framework using statistical and entropy models to assess coastal aquifer vulnerability. Hydrological Sciences Journal, 64 (9), 1117–1128. doi:10.1080/02626667.2019.1620951.
  • Bouderbala, A., et al., 2016. Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria). Arabian Journal of Geosciences, 9 (3), 1–12. doi:10.1007/s12517-015-2151-6.
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324.
  • Catani, V., et al., 2020. A new approach for aquifer vulnerability assessment: the case study of Campania Plain. Water Resources Management, 34 (2), 819–834. doi:10.1007/s11269-019-02476-5.
  • Chachadi, A.G. and Lobo-Ferreira, J.P., 2001. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin, 4, 7–9.
  • Deb, K., et al., 2000. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Berlin, Heidelberg: Springer, 849–858.
  • Gontara, M., et al., 2016. Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arabian Journal of Geosciences, 9 (5), 416. doi:10.1007/s12517-016-2437-3.
  • Gorgij, A.D. and Moghaddam, A.A., 2016. Vulnerability assessment of saltwater intrusion using simplified GAPDIT method: a case study of Azarshahr Plain Aquifer, East Azerbaijan, Iran. Arabian Journal of Geosciences, 9 (2), 106. doi:10.1007/s12517-015-2200-1.
  • Haghighat, M., et al., 2021. Multi-objective conflict resolution optimization model for reservoir’s selective depth water withdrawal considering water quality. Environmental Science and Pollution Research, 28 (3), 3035–3050. doi:10.1007/s11356-020-10475-y.
  • Huang, M., et al., 2016. Multi‐objective optimisation for design and operation of anaerobic digestion using GA‐ANN and NSGA‐II. Journal of Chemical Technology and Biotechnology, 91 (1), 226–233. doi:10.1002/jctb.4568.
  • Jafari, S.M. and Nikoo, M.R., 2016. Groundwater risk assessment based on optimization framework using DRASTIC method. Arabian Journal of Geosciences, 9 (20), 1–14. doi:10.1007/s12517-016-2756-4.
  • Kazakis, N., et al., 2018. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Science of the Total Environment, 621, 524–534. doi:10.1016/j.scitotenv.2017.11.235.
  • Kazakis, N., et al., 2019. GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. Journal of Environmental Management, 235, 257–265. doi:10.1016/j.jenvman.2019.01.069.
  • Keršuliene, V., Zavadskas, E.K., and Turskis, Z., 2010. Selection of rational dispute resolution method by applying new stepwise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11 (2), 243–258. doi:10.3846/jbem.2010.12.
  • Khosravi, K., et al., 2018. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 642, 1032–1049. doi:10.1016/j.scitotenv.2018.06.130.
  • Khosravi, K., et al., 2021. New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Science of the Total Environment, 767, 145416. doi:10.1016/j.scitotenv.2021.145416.
  • Lakshminarayanan, B., et al., 2022. New DRASTIC framework for groundwater vulnerability assessment: bivariate and multi-criteria decision-making approach coupled with metaheuristic algorithm. Environmental Science and Pollution Research, 29 (3), 4474–4496. doi:10.1007/s11356-021-15966-0.
  • Lobo-Ferreira, J.P., et al., 2005. Assessing aquifer vulnerability to seawater intrusion using GALDIT method. Part 1: application to the Portuguese aquifer of Monte Gordo.
  • Mahrez, B., et al., 2018. GIS-based GALDIT method for vulnerability assessment to seawater intrusion of the Quaternary coastal Collo aquifer (NE-Algeria). Arabian Journal of Geosciences, 11 (4), 1–14. doi:10.1007/s12517-018-3400-2.
  • Mirzavand, M., et al., 2018. Saltwater intrusion vulnerability assessment using AHP-GALDIT model in Kashan plain aquifer as critical aquifer in a semi-arid region. Desert, 23 (2), 255–264.
  • Moazamnia, M., et al., 2020. Vulnerability indexing to saltwater intrusion from models at two levels using artificial intelligence multiple model (AIMM). Journal of Environmental Management, 255, 109871. doi:10.1016/j.jenvman.2019.109871.
  • Motevalli, A., Moradi, H.R., and Javadi, S., 2018. A comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). Journal of Hydrology, 557, 753–773. doi:10.1016/j.jhydrol.2017.12.047.
  • Naserizade, S.S., et al., 2021. A hybrid fuzzy-probabilistic bargaining approach for multi-objective optimization of contamination warning sensors in water distribution systems. Group Decision and Negotiation, 30 (3), 641–663.
  • Nasri, G., et al., 2021. Water vulnerability of coastal aquifers using AHP and parametric models: methodological overview and a case study assessment. Arabian Journal of Geosciences, 14 (1), 1–19. doi:10.1007/s12517-020-06390-8.
  • Neshat, A. and Pradhan, B., 2015. An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Natural Hazards, 76 (1), 543–563. doi:10.1007/s11069-014-1503-y.
  • Nikoo, M.R., et al., 2014. Multi-objective optimumA design of double-layer perforated-wall breakwaters: application of NSGA-II and bargaining models. Applied Ocean Research, 47, 47–52. doi:10.1016/j.apor.2013.12.001.
  • Norouzi Khatiri, K., et al., 2020. Coupled simulation-optimization model for the management of groundwater resources by considering uncertainty and conflict resolution. Water Resources Management, 34 (11), 3585–3608. doi:10.1007/s11269-020-02637-x.
  • Parizi, E., et al., 2019. Vulnerability mapping of coastal aquifers to seawater intrusion: review, development and application. Journal of Hydrology, 570, 555–573. doi:10.1016/j.jhydrol.2018.12.021.
  • Paryani, S., Neshat, A., and Pradhan, B., 2021. Spatial landslide susceptibility mapping using integrating an adaptive neuro-fuzzy inference system (ANFIS) with two multi-criteria decision-making approaches. Theoretical and Applied Climatology, 146 (1), 489–509. doi:10.1007/s00704-021-03695-w.
  • Sadeghfam, S., et al., 2020. Transforming vulnerability indexing for saltwater intrusion into risk indexing through a fuzzy catastrophe scheme. Water Resources Management, 34 (1), 175–194. doi:10.1007/s11269-019-02433-2.
  • Salaj, S.S., et al., 2022. Appraisal of urban growth impacts on seawater intrusion vulnerability using GIS-based modified GALDIT-U model: a case study of Kozhikode coastal stretch, Kerala, South India. Journal of Applied Remote Sensing, 16 (1), 012014. doi:10.1117/1.JRS.16.012014.
  • Stanujkic, D., Karabasevic, D., and Zavadskas, E.K., 2015. A framework for the selection of a packaging design based on the SWARA method. Engineering Economics, 26 (2), 181–187. doi:10.5755/j01.ee.26.2.8820.
  • Torkashvand, M., et al., 2021a. DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy. Environmental Science and Pollution Research, 28 (34), 46704–46724. doi:10.1007/s11356-020-11406-7.
  • Torkashvand, M., et al., 2021b. New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. Journal of Hydrology, 598, 126446. doi:10.1016/j.jhydrol.2021.126446.
  • Trabelsi, N., et al., 2016. Aquifer vulnerability and seawater intrusion risk using GALDIT, GQI SWI and GIS: case of a coastal aquifer in Tunisia. Environmental Earth Sciences, 75 (8), 669. doi:10.1007/s12665-016-5459-y.
  • Wainwright, H.M., et al., 2022. Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions. Hydrology and Earth System Sciences, 26 (2), 429–444. doi:10.5194/hess-26-429-2022.
  • Wang, X., et al., 2018. Production process optimization of metal mines considering economic benefit and resource efficiency using an NSGA-II model. Processes, 6 (11), 228. doi:10.3390/pr6110228.
  • Yazdandoost, F., Razavi, H., and Izadi, A., 2022. Optimization of agricultural patterns based on virtual water considerations through integrated water resources management modeling. International Journal of River Basin Management, 20 (2), 255–263. doi:10.1080/15715124.2021.1879093.
  • Zare, M., et al., 2022. Progressive improvement of DRASTICA and SI models for groundwater vulnerability assessment based on evolutionary algorithms. Environmental Science and Pollution Research, 29, 55845–55865. doi:10.1007/s11356-022-19620-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.