800
Views
2
CrossRef citations to date
0
Altmetric
Special issue: Advances in Statistical Hydrology - Selected Contributions of STAHY 2021

Exploring the uncertainty of weather generators’ extreme estimates in different practical available information scenarios

, &
Pages 1203-1212 | Received 10 May 2022, Accepted 03 Apr 2023, Published online: 16 Jun 2023

References

  • Ahn, K.H., 2020. Coupled annual and daily multivariate and multisite stochastic weather generator to preserve low- and high-frequency variability to assess climate vulnerability. Journal of Hydrology, 581, 124443. doi:10.1016/j.jhydrol.2019.124443
  • Ailliot, P., et al., 2020. Stochastic weather generator for the design and reliability evaluation of desalination systems with renewable energy sources. Renewable Energy, 158, 541–553. doi:10.1016/j.renene.2020.05.076
  • Ailliot, P., et al., 2015. Stochastic weather generators: an overview of weather type models. Journal de la Société Française de Statistique, 156, 101–113.
  • Alfieri, L., et al., 2017. Global projections of river flood risk in a warmer world. Earth’s Future, 5 (2), 171–182. doi:10.1002/2016EF000485
  • Beneyto, C., et al., 2020. New approach to estimate extreme flooding using continuous synthetic simulation supported by regional precipitation and non-systematic flood data. Water (Switzerland), 12, 1–16.
  • Breinl, K., et al., 2017. Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity? Scientific Reports, 7 (1), 1–12. doi:10.1038/s41598-017-05822-y
  • Camarasa Belmonte, A.M. and Segura Beltrán, F., 2001. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena, 45 (3), 229–249. doi:10.1016/S0341-8162(01)00146-1
  • Caron, A., Leconte, R., and Brissette, F., 2009. An improved stochastic weather generator for hydrological impact studies. Canadian Water Resources Journal, 33 (3), 233–256. doi:10.4296/cwrj3303233
  • Chen, J., Brissette, F.P., and Leconte, R., 2010. A daily stochastic weather generator for preserving low-frequency of climate variability. Journal of Hydrology, 388 (3–4), 480–490. doi:10.1016/j.jhydrol.2010.05.032
  • Chen, J., Brissette, F.P., and Leconte, R., 2011. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 401 (3–4), 190–202. doi:10.1016/j.jhydrol.2011.02.020
  • Chun, K.P., Wheater, H.S., and Onof, C., 2013. Comparaison des projections de sécheresse utilisant deux générateurs de données météorologiques du Royaume-Uni. Hydrological Sciences Journal, 58 (2), 295–309. doi:10.1080/02626667.2012.754544
  • Cowpertwait, P., et al., 2013. Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain. Hydrology and Earth System Sciences, 17 (2), 479–494. doi:10.5194/hess-17-479-2013
  • Cowpertwait, P.S.P., 1998. A Poisson-cluster model of rainfall: high-order moments and extreme values. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454 (1971), 885–898. doi:10.1098/rspa.1998.0191
  • Dai, C. and Qin, X.S., 2019. Assessment of the effectiveness of a multi-site stochastic weather generator on hydrological modelling in the Red Deer River watershed, Canada. Hydrological Sciences Journal, 64 (13), 1616–1628. doi:10.1080/02626667.2019.1661416
  • Evin, G. and Favre, A.C., 2012. Further developments of a transient Poisson-cluster model for rainfall. Stochastic Environmental Research and Risk Assessment, 27 (4), 831–847. doi:10.1007/s00477-012-0612-y
  • Evin, G., Favre, A.C., and Hingray, B., 2018. Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrology and Earth System Sciences, 22 (1), 655–672. doi:10.5194/hess-22-655-2018
  • Furrer, E.M. and Katz, R.W., 2008. Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resources Research, 44 (12), 1–13. doi:10.1029/2008WR007316
  • Herrera, S., Fernández, J., and Gutiérrez, J.M., 2016. Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of Climatology, 36 (2), 900–908. doi:10.1002/joc.4391
  • Hundecha, Y., Pahlow, M., and Schumann, A., 2009. Modeling of daily precipitation at multiple locations using a mixture of distributions to characterize the extremes. Water Resources Research, 45 (12).
  • IPCC, 2022. IPCC AR6 WGII Sixth Assessment Report.
  • Khazaei, M.R., Hasirchian, M., and Zahabiyoun, B., 2021. An improved daily weather generator for the assessment of regional climate change impacts. Theoretical and Applied Climatology, 146 (1–2), 475–487. doi:10.1007/s00704-021-03753-3
  • Kotlarski, S., et al., 2017. Observational uncertainty and regional climate model evaluation: a pan-European perspective. International Journal of Climatology, 21, 3730–3749.
  • Li, X. and Babovic, V., 2019. Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches. Climate Dynamics, 52 (9–10), 5775–5799. doi:10.1007/s00382-018-4480-0
  • Li, Z. and Shi, X., 2019. Stochastic generation of daily precipitation considering diverse model complexity and climates. Theoretical and Applied Climatology, 137 (1–2), 839–853. doi:10.1007/s00704-018-2638-7
  • Llasat, M.C. and Puigcerver, M., 1990. Cold air pools over Europe. Meteorology and Atmospheric Physics, 42 (3–4), 171–177. doi:10.1007/BF01314823
  • Mateu, J.F., 1974. La Rambla de la Viuda. Clima e Hidrología. Vol. 15. Cuadernos de Geografia, 47–68.
  • Merz, R. and Blöschl, G., 2008. Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44.
  • Naveau, P., 2016. Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resources Research, 52, 2753–2769.
  • Papalexiou, S.M., 2018. Unified theory for stochastic modelling of hydroclimatic processes: preserving marginal distributions, correlation structures, and intermittency. Advances in Water Resources, 115, 234–252. doi:10.1016/j.advwatres.2018.02.013
  • Papalexiou, S.M., 2022. Rainfall generation revisited: introducing CoSMoS‐2s and advancing copula‐based intermittent time series modeling. Water Resources Research, 58 (6), 1–33. doi:10.1029/2021WR031641
  • Papalexiou, S.M., et al., 2018. Precise temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for stationary and nonstationary processes. Water Resources Research, 54 (10), 7435–7458. doi:10.1029/2018WR022726
  • Papastathopoulos, I. and Tawn, J.A., 2013. Extended generalised Pareto models for tail estimation. Journal of Statistical Planning and Inference, 143 (1), 131–143. doi:10.1016/j.jspi.2012.07.001
  • Paprotny, D. and Morales-Nápoles, O., 2017. Estimating extreme river discharges in Europe through a Bayesian network. Hydrology and Earth System Sciences, 21 (6), 2615–2636. doi:10.5194/hess-21-2615-2017
  • Rajagopalan, B. and Lall, U., 1999. A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resources Research, 35 (10), 3089–3101. doi:10.1029/1999WR900028
  • Richardson, C.W., 1981. Stochastic modelling of daily precipitation, temperature and solar radiation. Water Resources Research, 17 (1), 182–190. doi:10.1029/WR017i001p00182
  • Richardson, C.W. and Wright, D.A., 1984. WGEN: a model for generating daily weather variables. U.S. Department of Agriculture Research and Service, ARS, 8, 235.
  • Salazar-Galán, S., et al., 2021. A process-based flood frequency analysis within a trivariate statistical framework. Application to a semi-arid Mediterranean case study. Journal of Hydrology, 603.
  • Sharafati, A. and Pezeshki, E., 2020. A strategy to assess the uncertainty of a climate change impact on extreme hydrological events in the semi-arid Dehbar catchment in Iran. Theoretical and Applied Climatology, 139 (1–2), 389–402. doi:10.1007/s00704-019-02979-6
  • Sharif, M. and Burn, D.H., 2006. Simulating climate change scenarios using an improved K-nearest neighbor model. Journal of Hydrology, 325 (1–4), 179–196. doi:10.1016/j.jhydrol.2005.10.015
  • Vesely, F.M., et al., 2019. Quantifying uncertainty due to Stochastic weather generators in climate change impact studies. Scientific Reports, 9 (1), 1–8. doi:10.1038/s41598-019-45745-4
  • Wilks, D.S., 1998. Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210 (1–4), 178–191. doi:10.1016/S0022-1694(98)00186-3
  • Wilks, D.S., 2009. A gridded multisite weather generator and synchronization to observed weather data. Water Resources Research, 45, 10.
  • Wilks, D.S. and Wilby, R.L., 1999. The weather generation game: a review of stochastic weather models. Progress in Physical Geography, 23 (3), 329–357. doi:10.1177/030913339902300302
  • WMO, 2011. Guide to climatological practices, Naturaweb.Net.