1,590
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving the representation of groundwater processes in a large-scale water resources model

ORCID Icon, , , ORCID Icon, , , , , , , & show all
Pages 1264-1285 | Received 10 Aug 2022, Accepted 21 Mar 2023, Published online: 13 Jun 2023

References

  • Benoit, D., et al., 2017. Geophysical signature location in the South-West of Chad: structural implications. Journal of Geology & Geophysics, 7 (1). doi:10.4172/2381-8719.1000319
  • Bhave, A.G., et al., 2018. Water resource planning under future climate and socioeconomic uncertainty in the Cauvery River basin in Karnataka, India. Water Resources Research, 54 (2), 708–728. doi:10.1002/2017WR020970
  • Burek, P., et al., 2020. Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 13 (7), 3267–3298. doi:10.5194/gmd-13-3267-2020
  • Census of India, 2001. Provisional population totals. Government of India.
  • Central Ground Water Board, 2009. District ground water brochures [online]. Available from: http://cgwb.gov.in/District-GW-Brochures.html [ Accessed 1 February 2021].
  • Coerver, H.M., Rutten, M.M., and van de Giesen, N.C., 2018. Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22 (1), 831–851. doi:10.5194/hess-22-831-2018
  • Collins, S., et al., 2020. Groundwater connectivity of asheared gneiss aquifer in the Cauvery River Basin, India. Hydrogeology Journal, 28 (4), 1371–1388. doi:10.1007/s10040-020-02140-y
  • Da, T., 2013. Mettur Dam. Water & Energy International, 70 (3), 59–60.
  • de Graaf, I.E.M., et al., 2014. Dynamic attribution of global water demand to surface water and groundwater resources: effects of abstractions and return flows on river discharges. Advances in Water Resources, 64, 21–33.
  • de Graaf, I.E.M., et al., 2017. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Advances in Water Resources, 102, 53–67.
  • Dewandel, B., et al., 2006. A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330 (1–2), 260–284. doi:10.1016/j.jhydrol.2006.03.026
  • Dewandel, B., et al., 2010. Development of a tool for managing groundwater resources in semi-arid hard rock regions: application to a rural watershed in South India. Hydrological Processes, 24 (19), 2784–2797. doi:10.1002/hyp.7696
  • Dewandel, B., et al., 2011. A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: example of a quartz reef in granitic terrain in South India. Journal of Hydrology, 405 (3–4), 474–487. doi:10.1016/j.jhydrol.2011.05.050
  • Döll, P., et al., 2012. Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 59-60, 143–156. doi:10.1016/j.jog.2011.05.001
  • Droppers, B., et al., 2020. Simulating human impacts on global water resources using VIC-5. Geoscientific Model Development, 13 (10), 5029–5052. doi:10.5194/gmd-13-5029-2020
  • Dumont, E., et al., 2012. Modelling indicators of water security, water pollution and aquatic biodiversity in Europe. Hydrological Sciences Journal, 57 (7), 1378–1403. doi:10.1080/02626667.2012.715747
  • Ebrahimi, H., Ghazavi, R., and Karimi, H., 2016. Estimation of groundwater recharge from the rainfall and irrigation in an arid environment using inverse modeling approach and RS. Water Resources Management, 30 (6), 1939–1951. doi:10.1007/s11269-016-1261-6
  • FAO, 2016. AQUASTAT main database, Food and Agriculture Organization of the United Nations (FAO) [online]. Available from: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en [ Accessed 27 January 2020].
  • FAO, 2018. Water use of livestock production systems and supply chains – guidelines for assessment (draft for public review). Rome, Italy: Livestock Environmental Assessment and Performance (LEAP) Partnership. FAO.
  • Fischer, G., et al., 2008. Global agro-ecological zones assessment for agriculture. Rome, Italy: IIASA, Laxenburg, Austria and FAO.
  • Government of India, 2011a. Household & irrigation Census 2011 - Town and Village directory [online]. Available from: https://censusindia.gov.in/DigitalLibrary/MFTableSeries.aspx [ Accessed 2 September 2020].
  • Government of India, 2011b. Census” of India 2011: city census. New Delhi, India: Registrar General and Census Commissioner of India, Ministry of Home Affairs.
  • Government of Karnataka, 2014. Watershed development department” annual report 2013-2014. Government of Karnataka.
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhydrol.2009.08.003
  • Hanasaki, N., et al., 2018. A global hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Sciences, 22 (1), 789–817. doi:10.5194/hess-22-789-2018
  • Horan, R., et al., 2021a. A comparative assessment of hydrological models in the upper Cauvery catchment. Water, 13 (2), 151. doi:10.3390/w13020151
  • Horan, R., et al., 2021b. Extending a large-scale model to better represent water resources without increasing the model’s complexity. Water, 13 (21), 3067. doi:10.3390/w13213067
  • Horan, R., et al., 2021c. Modelling small-scale storage interventions in semi-arid India at the basin scale. Sustainability, 13 (11), 6129. doi:10.3390/su13116129
  • Hora, T., Srinivasan, V., and Basu, N.B., 2019. The groundwater recovery paradox in south India. Geophysical Research Letters, 46 (16), 9602–9611. doi:10.1029/2019GL083525
  • India-WRIS, 2012. River basin atlas of India. Jodhpur: RSC-W, NRSC/ ISRO, Dept. of Space.
  • India-WRIS [online], 2020. Available from: https://indiawris.gov.in/wris/#/ [ Accessed 1 September 2020].
  • Jain, R., Kishore, P., and Singh, D.K., 2019. Irrigation in India: status, challenges and options. Journal of Soil and Water Conservation, 18 (4), 354. doi:10.5958/2455-7145.2019.00050.X
  • Jain, S.K. and Sudheer, K.P., 2008. Fitting of hydrologic models: a close look at the Nash-Sutcliffe index. Journal of Hydrologic engineering/American Society of Civil Engineers, Water Resources Engineering Division, 13 (10), 981–986.
  • Jimenez Cisneros, B.E., et al., 2014. Freshwater resources. In: C.B. Field, et al., eds. Climate change 2014: impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, 229–269.
  • KIADB, 2020. Karnataka industrial area development board [online]. Available from: http://en.kiadb.in/ [ Accessed 1 October 2020].
  • Kirchner, J.W., 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42 (3). doi:10.1029/2005WR004362
  • Knoben, W.J.M., Freer, J.E., and Woods, R.A., 2019. Technical note: inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23 (10), 4323–4331. doi:10.5194/hess-23-4323-2019
  • Krabbendam, M. and Palamakumbura, R., 2018. Gneiss, fractures and saprolite: field geology for hydrogeology of the central Cauvery Catchment, south India. Nottingham, UK: British Geological Survey: NERC Open Research Archive.
  • Krakauer, N.Y., Li, H., and Fan, Y., 2014. Groundwater flow across spatial scales: importance for climate modeling. Environmental Research Letters, 9 (3), 034003. doi:10.1088/1748-9326/9/3/034003
  • Long, D., et al., 2020. South-to-North water diversion stabilizing Beijing’s groundwater levels. Nature Communications, 11 (1), 3665. doi:10.1038/s41467-020-17428-6
  • Maréchal, D. and Holman, I.P., 2004. Comparison of hydrologic simulations using regionalised and catchment-calibrated parameter sets for three catchments in England. UK: Institute of Water and Environment, Cranfield University.
  • Meigh, J.R., McKenzie, A.A., and Sene, K.J., 1999. A grid-based approach to water scarcity estimates for eastern and Southern Africa. Water Resources Management, 13 (2), 85–115. doi:10.1023/A:1008025703712
  • Ministry of Water Resources, 2014. Cauvery basin. Version 2.0. India: Ministry of Water Resources.
  • Mishra, A. and Dhar, D., 2018. India needs to focus on water efficiency [online]. Available from: https://www.livemint.com/Opinion/Cbw6kcycrx0QtCPLKneAHP/India-needs-to-focus-on-water-efficiency.html [ Accessed 7 March 2022].
  • Mondal, A., et al., 2016. Hydrologic modelling. Proceedings of the Indian National Science Academy, 82 (3). doi:10.16943/ptinsa/2016/48487
  • Moore, R.J., 2007. The PDM rainfall-runoff model. Hydrology and Earth System Sciences, 11 (1), 483–499. doi:10.5194/hess-11-483-2007
  • Müller Schmied, H., et al., 2020. The global water resources and use model WaterGAP v2.2d: model description and evaluation.
  • Myers, D.T., et al., 2021. Choosing an arbitrary calibration period for hydrologic models: how much does it influence water balance simulations? Hydrological Processes, 35 (2). doi:10.1002/hyp.14045
  • NASA JPL, 2013. NASA shuttle radar topography mission global 1arc second. Pasadena, CA, USA: LP DAAC.
  • Nelder, J.A. and Mead, R., 1965. A simplex method for function minimization. The Computer Journal, 7 (4), 308–313. doi:10.1093/comjnl/7.4.308
  • Pai, D.S., et al., 2014. Developmentof a new high spatial resolution (0.25° X 0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Quarterly Journal of Meteorology, Hydrology & Geophysics, 65 (1), 1–18.
  • Palamakumbura, R., et al., 2020. Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications. Solid Earth, 11 (5), 1731–1746. doi:10.5194/se-11-1731-2020
  • Pechlivanidis, I.G., et al., 2014. Use of an entropy-based metric in multiobjective calibration to improve model performance. Water Resources Research, 50 (10), 8066–8083. doi:10.1002/2013WR014537
  • Pokhrel, Y.N., et al., 2015. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resources Research, 51 (1), 78–96. doi:10.1002/2014WR015602
  • Reinecke, R., et al., 2019. Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model. Geoscientific Model Development, 12 (6), 2401–2418. doi:10.5194/gmd-12-2401-2019
  • Robinson, T.P., et al., 2014. Mapping the global distribution of livestock. Plos One, 9 (5), e96084. doi:10.1371/journal.pone.0096084
  • Roy, P.S., et al., 2016. Decadal land use and land cover classifications across India, 1985, 1995, 2005. ORNL DAAC, Oak Ridge, Tennessee. doi:10.3334/ORNLDAAC/1336
  • Safeeq, M. and Fares, A., 2016. Groundwater and surface water interactions in relation to natural and anthropogenic environmental changes. In: A. Fares, ed. Emerging issues in groundwater resources. Cham: Springer International Publishing, 289–326.
  • Scheidegger, J.M., et al., 2021. Integration of 2D lateral groundwater flow into the Variable Infiltration Capacity (VIC) model and effects on simulated fluxes for different grid resolutions and aquifer diffusivities. Water, 13 (5), 663. doi:10.3390/w13050663
  • Sekhar, M., et al., 2017. Groundwater level dynamics in bengaluru city, India. Sustainability, 10 (2), 26. doi:10.3390/su10010026
  • Sharma, A., Hipel, K.W., and Schweizer, V., 2020. Strategic insights into the Cauvery River Dispute in India. Sustainability, 12 (4), 1286. doi:10.3390/su12041286
  • Singhal, B.B.S. and Gupta, R.P., 2010. Applied hydrogeology of fractured rocks. 2nd ed. Dordrecht, Netherlands: Springer.
  • Srinivasan, V., et al., 2015. Why is the Arkavathy river drying? A multiple-hypothesis approach in a data-scarce region. Hydrology and Earth System Sciences, 19 (4), 1905–1917. doi:10.5194/hess-19-1905-2015
  • Subash, Y., et al., 2017. A framework for assessment of climate change impacts on groundwater system formations. In: C.S.P. Ojha, R.Y. Surampalli, and A. Bárdossy, eds. Sustainable water resources management. Reston, VA: American Society of Civil Engineers, 375–397.
  • Sutanudjaja, E.H., et al., 2018. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11 (6), 2429–2453. doi:10.5194/gmd-11-2429-2018
  • Thirel, G., et al., 2015. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 60 (7–8), 1184–1199. doi:10.1080/02626667.2014.967248
  • TIDCO, 2020. TIDCO – Tamil Nadu industrial development corporation ltd [online]. Available from: https://tidco.com/ [ Accessed 1 October 2020].
  • UK Centre for Ecology and Hydrology, 2020. GWAVA: global water availability assessment model technical guide and user manual. Wallingford, UK: UKCEH.
  • Vanham, D., Weingartner, R., and Rauch, W., 2011. The Cauvery river basin in southern India: major challenges and possible solutions in the 21st century. Water Science and Technology, 64 (1), 122–131. doi:10.2166/wst.2011.554
  • Vörösmarty, C.J., Leveque, C., and Revenga, C., 2005. Freshwater ecosystems millennium ecosystem assessment volume 1: conditions and trends. Washington, DC: Island Press.
  • Wada, Y., et al., 2013. Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 8 (3), 034036. doi:10.1088/1748-9326/8/3/034036
  • Winter, T.C., et al., 1998. Ground water and surface water: a single resource. Circular 1139. doi:10.3133/cir1139
  • Xu, Y.D., Fu, B.J., and He, C.S., 2013. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrology and Earth System Sciences, 17 (6), 2185–2193. doi:10.5194/hess-17-2185-2013
  • Zajac, Z., et al., 2017. The impact of lake and reservoir parameterization on global streamflow simulation. Journal of Hydrology, 548, 552–568. doi:10.1016/j.jhydrol.2017.03.022
  • Zhao, G., et al., 2016. Integrating a reservoir regulation scheme into a spatially distributed hydrological model. Advances in Water Resources, 98, 16–31. doi:10.1016/j.advwatres.2016.10.014