602
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A simple method of bias correction for GCM derived streamflow at catchment scale

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1409-1425 | Received 08 Jun 2021, Accepted 14 Apr 2023, Published online: 26 Jun 2023

References

  • Ahmed, K., et al., 2019. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23, 4803–4824. doi:10.5194/hess-23-4803-2019.
  • Anwar, A.H.M., et al., 2011. The effect of climate change on stream flow reduction in Murray-Hotham river catchment, Western Australia. IWA water convention conference-sustainable water solutions for a changing urban environment, 4–8 July. Singapore: Singapore International Water Week.
  • Bae, D.-H., Jung, I.-W., and Lettenmaier, D.P., 2011. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea. Journal of Hydrology, 401 (1–2), 90–105. doi:10.1016/j.jhydrol.2011.02.012.
  • Bari, M.A., Amirthanathan, G.E., and Timbal, B. 2010 Climate change and long term water availability in South-Western Australia - an experimental projection. Climate change 2010: practical responses to climate change national conference, 29–1 September–October. Melbourne, Australia. Available from: https://search.informit.com.au/documentSummary;dn=769270460134136;res=IELENG.
  • Bari, M.A., Shakya, D.M., and Owens, M., 2009. LUCICAT Live – A modelling framework for predicting catchment management options, In: R.S. Anderssen, R.D. Braddock, and L.T.H. Newham (eds.) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, July , 3457-3463. https://mssanz.org.au/modsim09/I8/bari.pdf
  • Bari, M.A. and Smettem, K.R.J., 2003. Development of a salt and water balance model for a large partially cleared catchment. Australasian Journal of Water Resources, 7 (2), 93–99. doi:10.1080/13241583.2003.11465232.
  • Blöschl, G. and Sivapalan, M., 1995. Scale issues in hydrological modelling: a review. Hydrological Processes, 9, 251–290. doi:10.1002/hyp.3360090305.
  • Chen, J., et al., 2011. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resources Research, 47 (12), 1–16. doi:10.1029/2011WR010602.
  • Christensen, N.S. and Lettenmaier, D.P., 2007. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Hydrology and Earth System Sciences, 11, 1417–1434. doi:10.5194/hess-11-1417-2007.
  • Coulibaly, P., 2009. Multi-model approach to hydrologic impact of climate change, and Taniguchi, et al., eds. From headwaters to the ocean, hydrological change and water management. London: CRC Press, Taylor and Francis Group, 249–255.
  • Demirel, M.C., et al., 2018. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrology and Earth System Sciences, 22, 1299–1315. doi:10.5194/hess-22-1299-2018.
  • Dibike, Y.B. and Coulibaly, P., 2005. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology, 307 (1–4), 145–163. doi:10.1016/j.jhydrol.2004.10.012.
  • Ehret, U., et al., 2012. HESS Opinions “Should we apply bias correction to global and regional climate model data?” Hydrology and Earth System Sciences, 16 (9), 3391–3404. doi:10.5194/hess-16-3391-2012.
  • Evans, J.P., et al., 2014. Design of a regional climate modeling projection ensemble experiment. NARCliM. Geoscience Model Development, 7, 621–629. doi:10.5194/gmd-7-621-2014.
  • Fita, L., et al., 2016. Evaluation of the regional climate response in Australia to large-scale climate models in the historical NARCliM simulations. Climate Dynamics, 1, 2815–2829. doi:10.1007/s00382-016-3484-x.
  • Ghosh, S. and Mujumdar, P.P., 2007. Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment. Water Resources Research, 43 (7), 1–19. doi:10.1029/2006WR005351.
  • Ghosh, S. and Mujumdar, P.P., 2009. Climate change impact assessment: uncertainty modeling with imprecise probability. Journal of Geophysical Research, 114 (18), D18113. doi:10.1029/2008JD011648.
  • Haddeland, I., et al., 2012. Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrology and Earth System Sciences, 16, 305–318. doi:10.5194/hess-16-305-2012.
  • Hagemann, S., et al., 2011. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. Journal of Hydrometeorology, 12 (4), 556–578. doi:10.1175/2011JHM1336.1.
  • Haque, M., et al., 2015. Estimation of catchment yield and associated uncertainties due to climate change in a mountainous catchment in Australia. Hydrological Processes, 29 (19), 4339–4349. doi:10.1002/hyp.10492.
  • Hempel, S., et al., 2013. A trend-preserving bias correction – the ISI-MIP approach. Earth System Dynamics, 4, 219–236. doi:10.5194/esd-4-219-2013.
  • Henriksen, H.J., et al., 2008. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater–surface water model. Journal of Hydrology, 348, 224–240. doi:10.1016/j.jhydrol.2007.09.056.
  • Hossain, M.M., et al., 2021a. Comparing spatial interpolation methods for CMIP5 monthly precipitation at catchment scale. Indian Water Resources Society, 41 (2), 28–34. Available from: http://iwrs.org.in/journal/apr2021/5apr.pdf.
  • Hossain, M.M., et al., 2021b. Drift in CMIP5 decadal precipitation at catchment level. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-021-02140-8.
  • Hossain, M.M., et al., 2021c. Intercomparison of drift correction alternatives for CMIP5 decadal precipitation. International Journal of Climatology. doi:10.1002/joc.7287.
  • Hughes, D.A., Kingston, D.G., and Todd, M.C., 2011. Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrology and Earth System Sciences, 15 (3), 931–941. doi:10.5194/hess-15-931-2011.
  • Huttner, P. 2020. How accurate are forecast models 1 to 2 weeks ahead? Forecast models keep hinting at subzero air by mid-January. MPRnews, 2 Jan. Available from: https://www.mprnews.org/story/2020/01/02/forecast-models-keep-hinting-at-subzero-air-ahead [ Accessed 22 November 2022].
  • Ines, A.V.M. and Hansen, J.W., 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 138, 44–53. doi:10.1016/j.agrformet.2006.03.009.
  • Intergovernmental Panel on Climate Change (IPCC). 2000. Special report on emission scenarios. UK: Cambridge University Press, 570. Available from: https://www.ipcc.ch/site/assets/uploads/2018/03/emissions_scenarios-1.pdf.
  • Intergovernmental Panel on Climate Change (IPCC). 2007 Climate change 2007: impacts, adaptation, and vulnerability: working group II contribution to the intergovernmental panel on climate change fourth assessment report, summary for policymakers, Cambridge, UK: Cambridge University Presss, 7–22. Available from: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-spm-1.pdf.
  • Islam, S.A., Bari, M., and Anwar, A.H.M.F. 2011 Assessment of hydrologic impact of climate change on Ord river catchment of Western Australia for water resources planning: a multi-model ensemble approach. Proceedings of the 19th International Congress on Modelling and Simulation, 12–16 December 2011. Perth, Western Australia, 3587–3593. Available from: https://www.mssanz.org.au/modsim2011/I6/islam.pdf.
  • Islam, S.A., Bari, M.A., and Anwar, A.H.M.F., 2014. Hydrologic impact of climate change on Murray-Hotham catchment of Western Australia: a projection of rainfall-runoff for future water resources planning. Hydrology and Earth System Sciences, 18 (9), 3591–3614. doi:10.5194/hess-18-3591-2014.
  • Johnson, F. and Sharma, A., 2011. Accounting for interannual variability: a comparison of options for water resources climate change impact assessments. Water Resources Research, 47 (4). doi:10.1029/2010WR009272.
  • Johnson, F. and Sharma, A., 2012. A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resources Research, 48, W01504. doi:10.1029/2011WR010464.
  • Krause, P., Boyle, D.P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-2005.
  • Kundzewicz;, Z.W., et al., 2007. Freshwater resources and their management. Climate change 2007: impacts, adaptation and vulnerability – contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press. Available from: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter3-1.pdf.
  • Laflamme, E.M., Linder, E., and Pan, Y., 2016. Statistical downscaling of regional climate model output to achieve projections of precipitation extremes. Weather and Climate Extremes, 12, 15–23. doi:10.1016/j.wace.2015.12.001.
  • Lenderink, G., Buishand, A., and van Deursen, W., 2007. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 11 (3), 1145–1159. doi:10.5194/hess-11-1145-2007.
  • Maraun, D., 2016. Bias correcting climate change simulations—a critical review. Current Climate Change Reports, 2, 211–220. doi:10.1007/s40641-016-0050-x.
  • Maraun, D., et al., 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (2009RG000314), 1–38. doi:10.1029/2009RG000314.
  • Mehan, S., Gitau, M.W., and Flanagan, D.C., 2019. Reliable future climatic projections for sustainable hydro-meteorological assessments in the Western Lake Erie Basin. Water, 11 (3), 581. doi:10.3390/w11030581.
  • Mehrotra, R. and Sharma, A., 2015. Correcting for systematic biases in multiple raw GCM variables across a range of timescales. Journal of Hydrology, 520, 214–223. doi:10.1016/j.jhydrol.2014.11.037.
  • Mehrotra, R. and Sharma, A., 2016. A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: implications for downscaling. Journal of Climate, 29, 3519–3539. doi:10.1175/JCLI-D-15-0356.1.
  • Muerth, M.J., et al., 2013. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrology and Earth System Sciences, 17 (3), 1189–1204. doi:10.5194/hess-17-1189-2013.
  • New, M. and Hulme, M., 2000. Representing uncertainty in climate change scenarios: a Monte-Carlo approach. Integrated Assessment, 1 (3), 203–213. doi:10.1023/A:1019144202120.
  • Nishant, N., et al., 2021. Introducing NARCliM1.5: evaluating the performance of regional climate projections for southeast Australia for 1950–2100. Earth’s Future, (9), e2020EF001833. doi:10.1029/2020EF001833.
  • Nóbrega, M.T., et al., 2011. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15, 585–595. doi:10.5194/hess-15-585-2011.
  • Piani, C., Haerter, J.O., and Coppola, E., 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 99 (1–2), 187–192. doi:10.1007/s00704-009-0134-9.
  • Randall, D.A., et al., 2007. Climate models and their evaluation. Climate change 2007: the physical science Ba-sis, contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cam-bridge University Press. Available from: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter8-1.pdf.
  • Rojas, R., et al., 2011. Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrology and Earth System Sciences, 15, 2599–2620. doi:10.5194/hess-15-2599-2011.
  • Semenov, M.A. and Barrow, E.M. 2002 LARS-WG: a stochastic weather generator for use in climate impact studies, Version 3.0, user manual. Available from: http://resources.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARS-WG-Manual.pdf.
  • Shams, M.S., et al., 2018. Relating ocean-atmospheric climate indices with Australian river streamflow. Journal of Hydrology, 556, 294–309. doi:10.1016/j.jhydrol.2017.11.017.
  • Sunyer, M.A., Madsen, H., and Ang, P.H., 2012. A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmospheric Research, 103, 119–128. doi:10.1016/j.atmosres.2011.06.011.
  • Surfleet, C.G., et al., 2012. Selection of hydrologic modeling approaches for climate change assessment: a comparison of model scale and structures. Journal of Hydrology, 464–465, 233–248. doi:10.1016/j.jhydrol.2012.07.012.
  • Teutschbein, C. and Seibert, J., 2010. Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geography Compass, 7, 834–860. doi:10.1111/j.1749-8198.2010.00357.x.
  • Teutschbein, C. and Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology, 456-457, 12–29. doi:10.1016/j.jhydrol.2012.05.052.
  • Tian, B. and Dong, X., 2020. The double‐ITCZ Bias in CMIP3, CMIP5 and CMIP6 models based on annual mean precipitation. Geophysical Research Letters, 47, e2020GL087232. doi:10.1029/2020GL087232.
  • Timbal, B., Fernandez, E., and Li, Z., 2009. Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environmental Modelling and Software, 24, 341–358. doi:10.1016/j.envsoft.2008.07.007.
  • Wilby, R.L., et al., 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. Available from: http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf [Accessed 16 June 2016].
  • Wilby, R.L., Dawson, C.W., and Barrow, E.M., 2002. SDSM — a decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software, 17 (2), 145–157. doi:10.1016/S1364-8152(01)00060-3.
  • Wilby, R.L. and Harris, I., 2006. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resources Research, 42 (2), W02419. doi:10.1029/2005WR004065.
  • Wood, A.W., et al., 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189–216. doi:10.1023/B:CLIM.0000013685.99609.9e.
  • Woznicki, S.A., et al., 2016. Large-scale climate change vulnerability assessment of stream health. Ecological Indicators, 69, 578–594. doi:10.1016/j.ecolind.2016.04.002.