289
Views
1
CrossRef citations to date
0
Altmetric
Technical Note

Quantifying irrigation uptake in olive trees: a proof-of-concept approach combining isotope tracing and Hydrus-1D

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1479-1486 | Received 23 Aug 2022, Accepted 26 Apr 2023, Published online: 20 Jun 2023

References

  • Aguzzoni, A., et al., 2022. Water uptake dynamics in apple trees assessed by an isotope labeling approach. Agricultural Water Management, 266, 107572. doi:10.1016/j.agwat.2022.107572
  • Allen, R., et al., 1998. Crop evapotranspiration. FAO Irrigation and drainage paper 56. Irrigation and Drainage, 300 (56), 326.
  • Amin, A., et al., 2021. No evidence of isotopic fractionation in olive trees (Olea europaea): a stable isotope tracing experiment. Hydrological Sciences Journal, 66 (16), 2415–2430. doi:10.1080/02626667.2021.1987440
  • Asadollahi, M., et al., 2022. Toward a closure of catchment mass balance: insight on the missing link from a vegetated lysimeter. Water Resources Research, 58, e2021WR030698. doi:10.1029/2021WR030698
  • Barbeta, A., et al., 2022. Evidence for distinct isotopic composition of sap and tissue water in tree stems: consequences for plant water source identification. New Phytologist, 233, 1121–1132. doi:10.1111/nph.17857
  • Benettin, P., et al., 2021. Tracing and closing the water balance in a vegetated lysimeter. Water Resources Research, 57, e2020WR029049. doi:10.1029/2020WR029049
  • Beyer, M., et al., 2018. Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. Journal of Hydrology, 566, 122–136. doi:10.1016/j.jhydrol.2018.08.060
  • Beyer, M. and Penna, D., 2021. On the spatio-temporal under-representation of isotopic data in ecohydrological studies. Frontiers in Water, 3, 643013. doi:10.3389/frwa.2021.643013
  • Brunetti, G., et al., 2020. Handling model complexity with parsimony: numerical analysis of the nitrogen turnover in a controlled aquifer model setup. Journal of Hydrology, 584, 124681. doi:10.1016/j.jhydrol.2020.124681
  • Chen, G., et al., 2022. Soil water transport and plant water use patterns in subsidence fracture zone due to coal mining using isotopic labeling. Environmental Earth Sciences, 81 (310). doi:10.1007/s12665-022-10421-w
  • Danesh-Yazdi, M., et al., 2018. Bridging the gap between numerical solutions of travel time distributions and analytical storage selection functions. Hydrological Processes, 32, 1063–1076. doi:10.1002/hyp.11481
  • de Deurwaerder, H.P.T., et al., 2020. Causes and consequences of pronounced variation in the isotope composition of plant xylem water. Biogeosciences, 17 (19), 4853–4870. doi:10.5194/bg-17-4853-2020
  • de Melo, M.L.A. and de Jong van Lier, Q., 2021. Revisiting the Feddes reduction function for modelling root water uptake and crop transpiration. Journal of Hydrology, 603, 126952. doi:10.1016/j.jhydrol.2021.126952
  • Feddes, R.A., Kowalik, P.J., and Zaradny, H., 1978. Simulation of Field Water Use and Crop Yield. New York, NY: John Wiley & Sons.
  • Gelhar, L.W., Welty, C., and Rehfeldt, K.R., 1992. A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28, 1955–1974. doi:10.1029/92WR00607
  • Granier, A., 1985. Une nouvelle methode pour la measure du flux de seve brute dans le tronc des arbres. Annales des Sciences Forestières, 42 (2), 193–200. doi:10.1051/forest:19850204
  • Groh, J., et al., 2018. Inverse estimation of soil hydraulic and transport parameters of layered soils from water stable isotope and lysimeter data. Vadose Zone Journal, 17, 170168. doi:10.2136/vzj2017.09.0168
  • Jackisch, C., et al., 2020. Estimates of tree root water uptake from soil moisture profile dynamics. Biogeosciences, 17, 5787–5808. doi:10.5194/bg-17-5787-2020
  • Kahmen, A., et al., 2021. Dynamic 2H irrigation pulse labelling reveals rapid infiltration and mixing of precipitation in the soil and species-specific water uptake depths of trees in a temperate forest. Ecohydrology, 14 (6), e2322. doi:10.1002/eco.2322
  • Koeniger, P., et al., 2011. An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Communications in Mass Spectrometry, 25 (20), 3041–3048. doi:10.1002/rcm.5198
  • Martín-Gómez, P., et al., 2016. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology. Tree Physiology, 37, 511–522. doi:10.1093/treephys/tpw115
  • Mennekes, D., et al., 2021. Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment. Hydrology and Earth System Sciences, 25, 4513–4530. doi:10.5194/hess-25-4513-2021
  • Nasta, P., et al., 2021. Assessing the nitrate vulnerability of shallow aquifers under Mediterranean climate conditions. Agricultural Water Management, 258, 107208. doi:10.1016/j.agwat.2021.107208
  • Penna, D., et al., 2010. On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrology and Earth System Sciences, 14, 1551–1566. doi:10.5194/hess-14-1551-2010
  • Penna, D., et al., 2012. Technical note: evaluation of between-sample memory effects in the analysis of δ2H and δ18O of water samples measured by laser spectroscopes. Hydrology and Earth System Sciences, 16, 3925–3933. doi:10.5194/hess-16-3925-2012
  • Penna, D., et al., 2018. Ideas and perspectives: tracing ecosystem water fluxes using hydrogen and oxygen stable isotopes—Challenges and opportunities from an interdisciplinary perspective. Biogeosciences, 15 (21), 6399–6415. doi:10.5194/bg-15-6399-2018
  • Penna, D., et al., 2020. Water sources for root water uptake: using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems. Agriculture, Ecosystems & Environment, 291, 106790. doi:10.1016/j.agee.2019.106790
  • Penna, D., et al., 2021. Water uptake of apple trees in the Alps: where does irrigation water go? Ecohydrology, 14. doi:10.1002/eco.2306
  • Poca, M., et al., 2019. Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas. Plant and Soil, 441, 485–497. doi:10.1007/s11104-019-04139-1
  • Rabbel, I., et al., 2018. Using sap flow data to parameterize the feddes water stress model for norway spruce. Water, 10, 279. doi:10.3390/w10030279
  • Rallo, G., et al., 2010. Agro-hydrological models to schedule irrigation of Mediterranean tree crops. Italian Journal of Agrometeorology, 1, 11–21.
  • Romano, N., 1993. Use of an inverse method and geostatistics to estimate soil hydraulic conductivity for spatial variability analysis. Geoderma, 60, 169–186. doi:10.1016/0016-7061(93)90025-G
  • Romano, N. and Santini, A., 1999. Determining soil hydraulic functions from evaporation experiments by a parameter estimation approach: experimental verifications and numerical studies. Water Resources Research, 35, 3343–3359. doi:10.1029/1999WR900155
  • Schaap, M.G. and Leij, F.J., 2000. Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Science Society of America Journal, 64, 843–851. doi:10.2136/sssaj2000.643843x
  • Schelle, H., et al., 2012. Inverse estimation of soil hydraulic and root distribution parameters from lysimeter data. Vadose Zone Journal, 11 (4). doi:10.2136/vzj2011.0169
  • Šimůnek, J., Šejna, M., and van Genuchten, M.T., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15, 1–25. doi:10.2136/vzj2016.04.0033
  • Sprenger, M., et al., 2015. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrology and Earth System Sciences, 19, 2617–2635. doi:10.5194/hess-19-2617-2015
  • Sprenger, M., et al., 2016. Travel times in the vadose zone: variability in space and time. Water Resources Research, 52, 5727–5754. doi:10.1002/2015WR018077
  • Stumpp, C., et al., 2012. Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: a long-term study using stable water isotopes. Vadose Zone Journal, 11 (1). doi:10.2136/vzj2011.0075
  • Vanderborght, J. and Vereecken, H., 2007. Review of dispersivities for transport modelling in soils. Vadose Zone Journal, 6, 29–52. doi:10.2136/vzj2006.0096
  • van Genuchten, M.T., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898. doi:10.2136/sssaj1980.03615995004400050002x
  • von Freyberg, J., et al., 2020. Plant and root-zone water isotopes are difficult to measure, explain, and predict: some practical recommendations for determining plant water sources. Methods in Ecology and Evolution, 11 (11), 1352–1367. doi:10.1111/2041-210x.13461
  • Wilusz, D.C., et al., 2020. Using particle tracking to understand flow paths, age distributions, and the paradoxical origins of the inverse storage effect in an experimental catchment. Water Resources Research, 56, e2019WR025140. doi:10.1029/2019WR025140
  • Yin, L., et al., 2015. Interaction between groundwater and trees in an arid site: potential impacts of climate variation and groundwater abstraction on trees. Journal of Hydrology, 528, 435–448. doi:10.1016/j.jhydrol.2015.06.063
  • Zarlenga, A. and Fiori, A., 2020. Physically based modelling of water age at the hillslope scale: the boussinesq age equations. Hydrological Processes, 34 (12), 2694–2706. doi:10.1002/hyp.13755
  • Zarlenga, A., Fiori, A., and Cvetkovic, V., 2022. On the interplay between hillslope and drainage network flow dynamics in the catchment travel time distribution. Hydrological Processes, 36 (3), e14530. doi:10.1002/hyp.14530
  • Zhou, T., et al., 2022. The impact of evaporation fractionation on the inverse estimation of soil hydraulic and isotope transport parameters. Journal of Hydrology, 612, 128100. doi:10.1016/j.jhydrol.2022.128100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.