199
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Use of long short-term memory network (LSTM) in the reconstruction of missing water level data in the River Seine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1372-1390 | Received 27 Sep 2022, Accepted 26 Apr 2023, Published online: 21 Jun 2023

References

  • Aichouri, I., et al., 2015. River flow model using artificial neural networks. Energy Procedia, 74, 1007–1014. doi:10.1016/j.egypro.2015.07.832
  • Akhter, M.F., Hassan, D., and Abbas, S., 2020. Predictive ARIMA model for coronal index solar cyclic data. Astronomy and Computing, 32, 100403. doi:10.1016/j.ascom.2020.100403
  • Bengio, Y., Simard, P.Y., and Frasconi, P., 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks / A Publication of the IEEE Neural Networks Council, 5 (2), 157–166. doi:10.1109/72.279181.
  • Büyükşahin, Ü.Ç. and Ertekin, Ş., 2019. Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing, 361, 151–163. doi:10.1016/j.neucom.2019.05.099
  • Che, Z., et al., 2018. Recurrent neural networks for multivariate time series with missing values. Scientific Reports, 8, 6085. doi:10.1038/s41598-018-24271-9
  • Cheng, M., et al., 2020. Long lead-time daily and monthly streamflow forecasting using machine learning methods. Journal of Hydrology (Amsterdam), 590, 125376. doi:10.1016/j.jhydrol.2020.125376
  • Contractor, S. and Roughan, M., 2021. Efficacy of feedforward and LSTM neural networks at predicting and gap filling coastal ocean timeseries: oxygen, nutrients, and temperature. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.637759.
  • Coulibaly, P. and Evora, N.D., 2007. Comparison of neural network methods for infilling missing daily weather records. Journal of Hydrology (Amsterdam), 341, 27–41. doi:10.1016/j.jhydrol.2007.04.020
  • Dastorani, M.T., et al., 2010. Application of ANN and ANFIS models for reconstructing missing flow data. Environmental Monitoring and Assessment, 166, 421–434. doi:10.1007/s10661-009-1012-8
  • Donders, A.R.T., et al., 2006. Review: a gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59, 1087–1091. doi:10.1016/j.jclinepi.2006.01.014
  • Evans, S., et al., 2020. Exploiting earth observation data to impute groundwater level measurements with an extreme learning machine. Remote Sensing (Basel), 12. doi:10.3390/RS12122044.
  • Habibi Khalifeloo, M., Mohammad, M., and Heydari, M., 2015. Multiple imputation for hydrological missing data by using a regression method (Klang River Basin). IJRET: International Journal of Research in Engineering and Technology, 4, 519–524.
  • Ho, S.L. and Xie, M., 1998. The use of ARIMA models for reliability forecasting and analysis. Computers & Industrial Engineering, 35, 213–216. doi:10.1016/S0360-8352(98)00066-7
  • Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735
  • Huang, T.-J., 2017. Imitating the brain with neurocomputer a “new” way towards artificial general intelligence. International Journal of Automation and Computing, 14, 520–531. doi:10.1007/s11633-017-1082-y
  • Junger, W.L. and Ponce de Leon, A., 2015. Imputation of missing data in time series for air pollutants. Atmospheric Environment, 102, 96–104. doi:10.1016/j.atmosenv.2014.11.049
  • Kim, M., et al., 2015. Comparative studies of different imputation methods for recovering streamflow observation. Water (Switzerland), 7, 6847–6860. doi:10.3390/w7126663
  • Kim, J.-W. and Pachepsky, Y.A., 2010. Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of Hydrology (Amsterdam), 394, 305–314. doi:10.1016/j.jhydrol.2010.09.005
  • Kingma, D.P. and Ba, J., 2015. Adam: a method for stochastic optimization. CoRR abs/1412.6980.
  • Körner, P., et al., 2018. Introducing gradient boosting as a universal gap filling tool for meteorological time series. Meteorologische Zeitschrift, 27, 369–376. doi:10.1127/metz/2018/0908
  • Li, H., et al., 2012. An algorithm based on time series similarity measurement for missing data filling. In: 2012 24th Chinese Control and Decision Conference (CCDC), 3933–3935. doi:10.1109/CCDC.2012.6244628.
  • Li, Z.-X., et al., 2017. Research on methods of filling missing data for multivariate time series. In: 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), 382–385. doi:10.1109/ICBDA.2017.8078845.
  • Ma, J., et al., 2020. A bi-directional missing data imputation scheme based on LSTM and transfer learning for building Energy data. Energy and Buildings, 216, 109941. doi:10.1016/j.enbuild.2020.109941
  • Maass, W. and Storey, V.C., 2021. Pairing conceptual modeling with machine learning. Data & Knowledge Engineering, 134, 101909. doi:10.1016/j.datak.2021.101909
  • McCulloch, W.S. and Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115–133. doi:10.1007/BF02478259
  • McKinney, W., 2010. Data structures for statistical computing in Python. In: Proceedings of the 9th Python in science conference, 56–61. doi:10.25080/Majora-92bf1922-00a
  • Moffat, A.M., et al., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147, 209–232. doi:10.1016/j.agrformet.2007.08.011
  • Montavon, G., Samek, W., and Müller, K.-R., 2018. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1–15. doi:10.1016/j.dsp.2017.10.011
  • Prechelt, L., 2012. Early stopping — but when? In: M. Grégoire, G.B. Orr, and K.-R. Müller, eds. Neural networks: tricks of the trade: second edition. Berlin, Heidelberg: Springer Berlin Heidelberg, 53–67. doi:10.1007/978-3-642-35289-8_5.
  • Rahman, A., Jahanara, I., and Jolly, Y.N., 2021. Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Science and Engineering, 14, 139–148. doi:10.1016/j.wse.2021.06.006
  • Rahman, A.T.M.S., et al., 2020. Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Advances in Water Resources, 141, 103595. doi:10.1016/j.advwatres.2020.103595
  • Rasouli, K., Hsieh, W., and Cannon, A., 2012. Daily streamflow forecasting by machine learning methods with weather and climate inputs. Journal of Hydrology, 414–415. doi:10.1016/j.jhydrol.2011.10.039.
  • Ren, H., et al., 2022. Technical note: using long short-term memory models to fill data gaps in hydrological monitoring networks. Hydrology and Earth System, 26, 1727–1743. doi:10.5194/hess-26-1727-2022
  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning internal representations by error propagation.
  • Şahin, Ü.A., Bayat, C., and Uçan, O.N., 2011. Application of cellular neural network (CNN) to the prediction of missing air pollutant data. Atmospheric Research, 101, 314–326. doi:10.1016/j.atmosres.2011.03.005
  • Sarafanov, M., Nikitin, N.O., and Kalyuzhnaya, A.V., 2022. Automated data-driven approach for gap filling in the time series using evolutionary learning. In: 16th international conference on soft computing models in industrial and environmental applications (SOCO 2021) 2022, 633–642. doi:10.1007/978-3-030-87869-6_60.
  • Sit, M., et al., 2020. A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 82, 2635–2670. doi:10.2166/wst.2020.369
  • Song, W., et al., 2020. A time series data filling method based on lstm—taking the stem moisture as an example. Sensors (Switzerland), 20, 1–21. doi:10.3390/s20185045
  • Suhermi, N., et al., 2018. Roll motion prediction using a hybrid deep learning and ARIMA model. Procedia Computer Science, 144, 251–258. doi:10.1016/j.procs.2018.10.526
  • Taie Semiromi, M. and Koch, M., 2019. Reconstruction of groundwater levels to impute missing values using singular and multichannel spectrum analysis: application to the Ardabil Plain, Iran. Hydrological Sciences Journal, 64, 1711–1726. doi:10.1080/02626667.2019.1669793
  • Tang, J., et al., 2017. Lane-changes prediction based on adaptive fuzzy neural network. Expert Systems with Applications, 91. doi:10.1016/j.eswa.2017.09.025.
  • Tian, Y., et al., 2018. LSTM-based traffic flow prediction with missing data. Neurocomputing, 318, 297–305. doi:10.1016/j.neucom.2018.08.067
  • Tongal, H. and Booij, M., 2018. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology (Amsterdam), 564, 266–282. doi:10.1016/j.jhydrol.2018.07.004
  • van der Walt, S., Colbert, S.C., and Varoquaux, G., 2011. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13, 22–30. doi:10.1109/MCSE.2011.37
  • Vu, M.T., et al., 2021. Reconstruction of missing groundwater level data by using long short-term memory (LSTM) deep neural network. Journal of Hydrology (Amsterdam), 597, 125776. doi:10.1016/j.jhydrol.2020.125776
  • Weilisi, and Kojima, T., 2022. Investigation of hyperparameter setting of a long short-term memory model applied for imputation of missing discharge data of the daihachiga river. Water (Switzerland), 14. doi:10.3390/w14020213.
  • Wei, W., and Tang, Y., 2003. A generic neural network approach for filling missing data in data mining. In: SMC’03 conference proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme - system security and assurance (Cat. No. 03CH37483), vol. 1, 862–867. doi:10.1109/ICSMC.2003.1243923.
  • Wen-sheng, W., 2003. Study on the long term prediction of annual electricity consumption using partial least square regressive model. Oncogene, 22, 955–963. doi:10.1038/sj.onc.1206237
  • Whitehead, P., et al., 2018. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: modelling nutrient and total coliform intervention strategies. Science of the Total Environment, 631–632, 223–232. doi:10.1016/j.scitotenv.2018.03.038
  • Wu, S., Feng, X., and Shan, Z.-G., 2012. Missing data imputation approach based on incomplete data clustering. Chinese Journal of Computers, 35, 1726. doi:10.3724/SP.J.1016.2012.01726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.