295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential assessment of calibration approaches using the SWAT hydrological model for streamflow and sediment yield for a large-scale catchment

& ORCID Icon
Pages 1895-1914 | Received 09 Mar 2023, Accepted 22 Jun 2023, Published online: 05 Sep 2023

References

  • Abbaspour, K.C., 2005. Calibration of hydrologic models: when is a model calibrated? In: A. Zerger and R. M. Argent, eds. MODSIM 2005 - international congress on modelling and simulation: advances and applications for management and decision making, Proceedings. Modelling and Simulation Society of Australia and New Zealand, 2449–2455.
  • Abbaspour, K.C., 2015. SWAT‐CUP SWATCalibration and uncertainty programs. Available from: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf
  • Abbaspour, K.C., Vaghefi, S.A., and Srinivasan, R., 2017. A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference. Water (Switzerland), 10 (1). doi:10.3390/w10010006.
  • Abbaspour, K.C., et al., 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333 (2–4), 413–430. doi:10.1016/j.jhydrol.2006.09.014.
  • Abera, W., et al., 2017. Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences, 21 (6), 3145–3165. doi:10.5194/hess-21-3145-2017.
  • Ahmed, A. and Hamid, U., 2008. Sediment in the Nile River system. Available from: http://isi.irtces.org/isi/rootfiles/2017/07/04/1487239390040025-1498713525648280.pdf
  • Akoko, G., et al., 2021. A review of SWAT model application in Africa. Water, 13, 1313. doi:10.3390/w13091313
  • Andualem, T.G. and Gebremariam, B., 2015. Impact of land use land cover change on stream flow and sediment yield: a case study of Gilgel Abay Watershed, Lake Tana Sub-Basin, Ethiopia. International Journal of Technology Enhancements and Emerging Engineering Research, 3 (11), 28.
  • Aragaw, H.M., Goel, M.K., and Mishra, S.K., 2021. Hydrological responses to human-induced land use/land cover changes in the Gidabo River basin, Ethiopia. Hydrological Sciences Journal, 66 (4), 640–655. Taylor & Francis. doi:10.1080/02626667.2021.1890328.
  • Aragaw, H.M. and Mishra, S.K., 2022. Multi-site multi-objective calibration of SWAT model using a large dataset for improved performance in Ethiopia. Arabian Journal of Geosciences, 15 (4), 1–18. Springer. doi:10.1007/S12517-022-09602-5.
  • Asres, M.T. and Awulachew, S.B., 2010. SWAT based runoff and sediment yield modeling: a case study of the Gumera watershed in the Blue Nile basin. Ecohydrology & Hydrobiology, 10 (2–4), 191–199. Elsevier B.V. doi:10.2478/v10104-011-0020-9.
  • Asselman, N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234 (3–4), 228–248. Elsevier. doi:10.1016/S0022-1694(00)00253-5.
  • Ayalew, L.T. and Bharti, R., 2020. Modelling sediment yield of Rib watershed, Northwest Ethiopia. ISH Journal of Hydraulic Engineering. doi:10.1080/09715010.2020.1797544.
  • Ayehu, G., Tadesse, T., and Gessesse, B., 2020. Remote sensing monitoring residual soil moisture and its association to the long-term variability of rainfall over the Upper Blue Nile Basin in Ethiopia. Remote Sensing, 12 (2138), 26. doi:10.3390/rs12132138.
  • Bagnold, R.A., 1977. Bedload transport in natural rivers. Water Resources Research, 13, 303–312. doi:10.1029/WR013i002p00303
  • Bau, I., et al., 2017. Simulating hydrogeomorphological processes to assess land degradation in the Upper Blue Nile Basin in Ethiopia using SWAT Technische Universität München Ingenieurfakultät Bau Geo Umwelt Bodendegradation im Einzugsgebiet des Oberen Blauen Nils in Äthiopien.
  • Betrie, G.D., et al., 2011. Sediment management modeling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15, 807–818. doi:10.5194/hess-15-807-2011
  • Cecílio, R.A., Amorim, H.D.M., and Zanetti, S.S., 2021. Multiple solutions, multi-site, and parameter transfer to calibrate DHSVM hydrological model. Cienc e Natura, 43, 43.
  • Čerkasova, N., Umgiesser, G., and Ertürk, A., 2019. Assessing climate change impacts on streamflow, sediment and nutrient loadings of the Minija River (Lithuania): a hillslope watershed discretization application with high-resolution spatial inputs. Water, 11 (4), 676. Multidisciplinary Digital Publishing Institute. doi:10.3390/W11040676.
  • Cheng, Q.-B., et al., 2018. Improved inverse modeling by separating model structural and observational errors. Water, 10 (1151), 1151. doi:10.3390/w10091151.
  • Choto, M. and Fetene, A., 2019. Impacts of land use/land cover change on stream flow and sediment yield of Gojeb watershed, Omo-Gibe basin, Ethiopia. Remote Sensing Applications: Society and Environment, 14 (October 2018), 84–99. Elsevier B.V. doi:10.1016/j.rsase.2019.01.003.
  • Chow, V.T., 1964. Handbook of applied hydrology. New York, USA: McGraw-Hill Book Company.
  • Chul, H., et al., 2017. Upper Blue Nile basin water budget from a multi-model perspective. Journal of Hydrology, 555, 535–546. Elsevier B.V. doi:10.1016/j.jhydrol.2017.10.040.
  • Clara, A., et al., 2020. Comparison of single-site, multi-site and multi-variable SWAT calibration strategies. Hydrological Sciences Journal, 65, 2376–2389. doi:10.1080/02626667.2020.1810252
  • Desai, S., et al., 2021. Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quaternary International, 571, 136–149. Elsevier Ltd. doi:10.1016/j.quaint.2020.11.032.
  • Dile, Y.T., et al., 2018. Advances in water resources research in the Upper Blue Nile basin and the way forward: a review. Journal of Hydrology, 560 (March), 407–423. doi:10.1016/j.jhydrol.2018.03.042.
  • Easton, Z.M., et al., 2010. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrology and Earth System Sciences, 14 (10), 1827–1841. doi:10.5194/hess-14-1827-2010.
  • FAO, 2011. Information products for Nile Basin water resources management. Synthesis Report. Available from: https://www.zaragoza.es/contenidos/medioambiente/onu//issue07/1110-eng-res2.pdf
  • Fischer, G., et al., 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria FAO, Rome, Italy. Available from: http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ [Accessed 5 October 2021].
  • Fuka, D.R., et al., 2014. Using the climate forecast system reanalysis as weather input data for watershed models. Hydrological Processes, 28 (22), 5613–5623. John Wiley and Sons Ltd. doi:10.1002/hyp.10073.
  • Gassman, P.W., et al., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE, 50 (4), 1211–1250. doi:10.13031/2013.23637.
  • Gebrekristos, S.T., 2015. Understanding catchment processes and hydrological modelling in the Abay/Upper Blue Nile basin, Ethiopia. doi:10.1016/j.jhydrol.2013.10.006.
  • Gebremicael, T.G., et al., 2013. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: a combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology, 482, 57–68. doi:10.1016/j.jhydrol.2012.12.023
  • Gernaat, D.E.H.J., et al., 2017. High-resolution assessment of global technical and economic hydropower potential. Nature Energy, 2 (10), 821–828. Springer US. doi:10.1038/s41560-017-0006-y.
  • Gray, J.R. and Simões, F.J.M., 2008. Estimating sediment discharge, 1065–1086. Available from: https://www.mendeley.com/reference-manager/reader/8969868a-ab48-3adb-80b8-e65e84c95f66/2e2bcb74-934e-e61b-042b-397e5c91bd88/
  • Haregeweyn, N., et al., 2017. Comprehensive assessment of soil erosion risk for better land use planning in river basins: case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95–108. Elsevier B.V. doi:10.1016/J.SCITOTENV.2016.09.019.
  • Horton, P., Schaefli, B., and Kauzlaric, M., 2021. Why do we have so many different hydrological models? A review based on the case of Switzerland. Science of Water Methods. doi:10.1002/wat2.1574.
  • IHA, 2019. How to guide hydropower erosion and sedimentation. London, UK. Available from: https://static1.squarespace.com/static/5c1978d3ee1759dc44fbd8ba/t/6062f48f03adf749f5c85c2a/1617097938029/How-to+Guide+Erosion+and+Sedimentation.pdf
  • IRENA, 2020. Renewable power generation costs in 2019. Irena. Available from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
  • Islam, A. and Cartwright, N., 2020. Evaluation of climate reanalysis and space-borne precipitation products over Bangladesh. doi:10.1080/02626667.2020.1730845.
  • Jain, S.K. and Singh, V.P., 2003. Water resource system planning and management. Development of Water Resources. 369. doi:10.1017/CBO9781107415324.004.
  • Jiang, D. and Wang, K., 2019. The role of satellite-based remote sensing in improving simulated streamflow: a review. Water, 11 (8), 1615. Multidisciplinary Digital Publishing Institute. doi:10.3390/W11081615.
  • Kardhana, H., et al., 2017. Small hydropower spot prediction using SWAT and a diversion algorithm, case study: Upper Citarum Basin. AIP Conference Proceedings, 1903 (November 2017). doi:10.1063/1.5011625.
  • Kebede Leta, M., Adugna Demissie, T., and Waseem, M., 2021. Analysis of hydrological characteristics of Blue Nile Basin, Nashe Watershed. Applied Sciences. doi:10.3390/app112411791.
  • Kusre, B.C., et al., 2010. Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India). Applied Energy, 87 (1), 298–309. Elsevier Ltd. doi:10.1016/j.apenergy.2009.07.019.
  • McCartney, M., et al., 2010. Evaluation of current and future water resources development in the Lake Tana Basin, Ethiopia. IWMI Research Reports, 2010, 1–31. Available from: https://www.researchgate.net/publication/254426165_Evaluation_of_current_and_future_water_resources_development_in_the_Lake_Tana_Basin_Ethiopia
  • Mccartney, M.P. and Girma, M.M., 2014. development in the Ethiopian portion of the Blue Nile River Evaluating the downstream implications of planned water resource development in the Ethiopian portion of the Blue Nile River. July 2012. doi:10.1080/02508060.2012.706384.
  • Moges, D.M., Kmoch, A., and Uuemaa, E., 2022. Application of satellite and reanalysis precipitation products for hydrological modeling in the data-scarce Porijõgi catchment, Estonia. Journal of Hydrology: Regional Studies, 41, 101070. Elsevier. doi:10.1016/J.EJRH.2022.101070.
  • Moiz, A., et al., 2018. A systematic decision support tool for robust hydropower site selection in poorly gauged basins. Applied Energy, 224 (May), 309–321. Elsevier. doi:10.1016/j.apenergy.2018.04.070.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153.
  • Mudbhari, D., Kansal, M.L., and Kalura, P., 2022. Impact of climate change on water availability in Marsyangdi river basin, Nepal. The Quarterly Journal of the Royal Meteorological Society Wiley, 148, 1407–1423. doi:10.1002/QJ.4267
  • Musyoka, F.K., et al., 2021. Multi-step calibration approach for SWAT model using soil moisture and crop yields in a small agricultural catchment. Water, 13 (16), 2238. Multidisciplinary Digital Publishing Institute. doi:10.3390/W13162238.
  • NASA Shuttle Topograpy Mission (SRTM), 2013. Shuttle Radar Topography Mission (SRTM GL1) Global 30m. OpenTopograpy. doi:10.5069/G9445JDF.
  • Negewo, T.F. and Sarma, A.K., 2021. Estimation of water yield under baseline and future climate change scenarios in Genale Watershed, Genale Dawa River Basin, Ethiopia, using SWAT model. Journal of Hydrologic Engineering, 26 (3), 05020051. doi:10.1061/(asce)he.1943-5584.0002047.
  • Neitsch, S., et al., 2011. Soil & water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, 1–647. doi:10.1016/j.scitotenv.2015.11.063.
  • Pandey, A., Lalrempuia, D., and Jain, S.K., 2015. Evaluation du potentiel hydroélectrique utilisant la technologie spatiale et le modèle SWAT pour la rivière Mat, dans le sud Mizoram, Inde. Hydrological Sciences Journal, 60 (10), 1651–1665. Taylor & Francis. doi:10.1080/02626667.2014.943669.
  • Piniewski, M. and Okruszko, T., 2011. Multi-site calibration and validation of the hydrological component of SWAT in a Large Lowland Catchment, 15–41. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-19059-9_2.
  • Pokharel, N., et al., 2020. Assessment of hydropower potential using SWAT modeling and spatial technology in the Seti Gandaki River, Kaski, Nepal. 8 (7). Availbale from: https://earthexplorer.usgs.gov
  • Polanco, E.I., et al., 2017. Improving SWAT model performance in the upper Blue Nile Basin using meteorological data integration and subcatchment discretization. Hydrology and Earth System Sciences, 21 (9), 4907–4926. doi:10.5194/hess-21-4907-2017.
  • Sammartano, V., Liuzzo, L., and Freni, G., 2019. Identification of potential locations for run-of-river hydropower plants using a GIS-based procedure. Energies, 12 (18), 1–20. doi:10.3390/en12183446.
  • Schleiss, A.J., et al., 2016. Reservoir sedimentation. Journal of Hydraulic Research, 54 (6), 595–614. doi:10.1080/00221686.2016.1225320.
  • Shawul, A.A., Alamirew, T., and Dinka, M.O., 2013. Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. Hydrology and Earth System Sciences Discussions. doi:10.5194/hessd-10-13955-2013.
  • Sheffield, J., Wood, E.F., and Roderick, M.L., 2012. Little change in global drought over the past 60 years. Nature, 491, 435–438. doi:10.1038/nature11575.
  • Shrestha, M.K., et al., 2016. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agricultural Water Management, 175, 61–71. Elsevier B.V. doi:10.1016/j.agwat.2016.02.009.
  • Siderius, C., et al., 2016. The role of rainfed agriculture in securing food production in the Nile Basin. Environmental Science & Policy, 61, 14–23. doi:10.1016/j.envsci.2016.03.007
  • Sutcliffe, J.V., 2009. The hydrology of the Nile Basin. In: The Nile: origin, environments, limnology and human use, 335–364. doi:10.1007/978-1-4020-9726-3_17.
  • Takele, G.S., et al., 2022. Hydrological modeling in the Upper Blue Nile basin using soil and water analysis tool (SWAT). Modeling Earth Systems and Environment, 8 (1), 277–292. Springer Science and Business Media Deutschland GmbH. doi:10.1007/S40808-021-01085-9/FIGURES/11.
  • Tan, M.L., et al., 2020. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 143 (February), 103662. Elsevier Ltd. doi:10.1016/j.advwatres.2020.103662.
  • Tefera, W.M. and Kasiviswanathan, K.S., 2022. A global-scale hydropower potential assessment and feasibility evaluations. Water Resources and Economics, 38, 100198. doi:10.1016/j.wre.2022.100198.
  • Tekleab, S., et al., 2014. Hydrologic responses to land cover change: the case of Jedeb mesoscale catchment, Abay/Upper Blue Nile Basin, Ethiopia. Hydrological Processes, 28 (20), 5149–5161. doi:10.1002/hyp.9998.
  • Tekleab, S., et al., 2015. Modélisation des processus pluie-débit sur les bassins versants méso-échelle de la Chemoga et de la Jedeb dans le bassin de l’Abay/Nil Bleu supérieur, en Ethiopie. Hydrological Sciences Journal, 60 (11), 2029–2046. Taylor & Francis. doi:10.1080/02626667.2015.1032292.
  • Verma, R.K., et al., 2016. Design flow duration curves for environmental flows estimation in Damodar River Basin, India. Applied Water Science, 7 (3), 1283–1293. Springer. doi:10.1007/S13201-016-0486-0.
  • Vogel, R.M. and Fennessey, N.M., 1994. Flow‐duration curves. I: new interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120 (4), 485–504. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)0733-9496(1994)120:4(485).
  • Vogel, R.M. and Fennessey, N.M., 1995. Flow duration curves II: a review of applications in water resources planning. JAWRA Journal of the American Water Resources Association, 31 (6), 1029–1039. doi:10.1111/j.1752-1688.1995.tb03419.x.
  • Warnick, C.C., et al., 1984. Hydropower engineering: hydroelectric power plants-design and construction. New Jersey 07632. doi:10.1017/CBO9781107415324.004.
  • White, E.D., et al., 2010. Development and application of a physically based landscape water balance in the SWAT model. Hydrological Processes, 25 (6). doi:10.1002/hyp.7876
  • Williams, J.R., 1980. SPNM, a model for pridicting sediment, phosphorus, and nitrogen yields from agriculture basin. Water Resources Bulletin, 16, 843–848. doi:10.1111/j.1752-1688.1980.tb02497.x
  • Worqlul, A.W., et al., 2015. Comparing TRMM 3B42, CFSR and ground-based rainfall comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, Ethiopia Comparing TRMM 3B42, CFSR and ground-based rain. Hydrology and Earth System Sciences Discussions, 12, 2081–2112. doi:10.5194/hessd-12-2081-2015
  • Yuan, L. and Forshay, K.J., 2020. Using SWAT to evaluate streamflow and lake sediment loading in the xinjiang river basin with limited data. Water (Switzerland), 12 (1), 39. doi:10.3390/w12010039.
  • Zhou, Y., et al., 2015. A comprehensive view of global potential for hydro-generated electricity. Energy & Environmental Science, 8 (9), 2622–2633. doi:10.1039/c5ee00888c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.