176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flood process types and runoff coefficient variability in climatic regions of Iran

& ORCID Icon
Pages 241-258 | Received 21 Feb 2023, Accepted 06 Dec 2023, Published online: 05 Feb 2024

References

  • Ajami, H., et al., 2017. On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective. Hydrology and Earth System Sciences, 21 (1), 281–294. Copernicus GmbH. doi:10.5194/HESS-21-281-2017
  • Bagheri-Gavkosh, M. and Hosseini, S.M., 2023. Flood seasonality analysis in Iran: a circular statistics approach. Journal of Hydrologic Engineering, 28 (2), 04022039. American Society of Civil Engineers (ASCE). doi:10.1061/JHYEFF.HEENG-5786/SUPPL_FILE/SUPPLEMENTAL_MATERIAL_JHYEFF_HEENG-5786_BAGHERI-GAVKOSH.ZIP
  • Berghuijs, W.R., et al., 2016. Dominant flood generating mechanisms across the United States. Geophysical Research Letters, 43 (9), 4382–4390. John Wiley & Sons, Ltd. doi:10.1002/2016GL068070
  • Berghuijs, W.R., et al., 2019. The relative importance of different flood-generating mechanisms across Europe. Water Resources Research, 55 (6), 4582–4593. John Wiley & Sons, Ltd. doi:10.1029/2019WR024841
  • Blume, T., Zehe, E., and Bronstert, A., 2007. Rainfall–runoff response, event-based runoff coefficients and hydrograph separation. Hydrological Sciences Journal, 52 (5), 843–862. doi:10.1623/hysj.52.5.843
  • Brunner, M.I. and Fischer, S., 2022. Snow-influenced floods are more strongly connected in space than purely rainfall-driven floods. Environmental Research Letters, 17 (10), 104038. IOP Publishing. doi:10.1088/1748-9326/AC948F
  • Brunner, M.I., et al., 2020. Spatial dependence of floods shaped by spatiotemporal variations in meteorological and land-surface processes. Geophysical Research Letters, 47 (13), e2020GL088000. John Wiley & Sons, Ltd. doi:10.1029/2020GL088000
  • Butt, M.J. and Bilal, M., 2011. Application of snowmelt runoff model for water resource management. Hydrological Processes, 25 (24), 3735–3747. John Wiley & Sons, Ltd. doi:10.1002/HYP.8099
  • Cassalho, F., et al., 2019. Evaluation of flood timing and regularity over hydrological regionalization in Southern Brazil. Journal of Hydrologic Engineering, 24 (8), 05019022. American Society of Civil Engineers. doi:10.1061/(ASCE)HE.1943-5584.0001815
  • Chapman, T.G. and Maxwell, A.I., 1996. Baseflow separation – comparison of numerical methods with tracer experiments. The Institution of Engineers, Australia National Conference on Publications, 96 (5), 539–545.
  • Cunderlik, J.M., Ouarda, T.B.M.J., and Bobée, B., 2004. On the objective identification of flood seasons. Water Resources Research, 40 (1), 1520. John Wiley & Sons, Ltd. doi:10.1029/2003WR002295
  • Dhakal, N. and Palmer, R.N., 2020. Changing river flood timing in the Northeastern and Upper Midwest United States: weakening of seasonality over time? Water, 12 (7), 1951. Multidisciplinary Digital Publishing Institute. doi:10.3390/W12071951
  • Dumanski, S., Pomeroy, J.W., and Westbrook, C.J., 2015. Hydrological regime changes in a Canadian Prairie basin. Hydrological Processes, 29 (18), 3893–3904. John Wiley & Sons, Ltd. doi:10.1002/HYP.10567
  • Farhadian, M., Bozorg-Haddad, O., and Loáiciga, H.A., 2021. Fulfillment of river environmental flow: applying Nash theory for quantitative-qualitative conflict resolution in reservoir operation. Water and Environment Journal, 35 (2), 486–499. John Wiley & Sons, Ltd. doi:10.1111/WEJ.12645
  • Fischer, S., Schumann, A., and Bühler, P., 2019. Timescale-based flood typing to estimate temporal changes in flood frequencies. Journal of Forensic Sciences, 64 (15), 1867–1892. Taylor & Francis. doi:10.1080/02626667.2019.1679376
  • Froidevaux, P., et al., 2015. Flood triggering in Switzerland: the role of daily to monthly preceding precipitation. Hydrology and Earth System Sciences, 19 (9), 3903–3924. Copernicus GmbH. doi:10.5194/HESS-19-3903-2015
  • Gaál, L., et al., 2012. Flood timescales: understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research, 48 (4), 1–21. doi:10.1029/2011WR011509
  • Graeff, T., et al., 2012. Predicting event response in a nested catchment with generalized linear models and a distributed watershed model. Hydrological Processes, 26 (24), 3749–3769. doi:10.1002/HYP.8463
  • Gutknecht, D., 2003. Extreme runoff events in small catchments — the need for a proper modelling strategy for early warning systems. In: Early warning systemes for natural disaster reduction. Berlin Heidelberg: Springer, 265–269. doi:10.1007/978-3-642-55903-7_34
  • Gvoždíková, B. and Müller, M., 2017. Evaluation of extensive floods in western/central Europe. Hydrology and Earth System Sciences, 21 (7), 3715–3725. Copernicus GmbH. doi:10.5194/HESS-21-3715-2017
  • Hargreaves, G.L., Hargreaves, G.H., and Riley, J.P., 1985. Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111 (3), 265–275. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)0733-9437(1985)111:3(265)
  • Heggen, J., 2001. Normalized antecedent precipitation index. Journal of Hydrologic Engineering, 6 (5), 377–381. doi:10.1061/(ASCE)1084-0699(2001)6:5(377)
  • IEM, 2022. Surface water resources dataset for Iran. Iran. (in Persian).
  • IRIMO, 2022. Temperature and precipitation dataset for Iran. Iran. (in Persian).
  • Jahanshahi, A., et al., 2022. Dependence of rainfall–runoff model transferability on climate conditions in Iran. Hydrological Sciences Journal, 67, 564–587. Accepted. doi:10.1080/02626667.2022.2030867
  • Jahanshahi, A. and Booij, M.J., 2023. Exploring controls on rainfall–runoff events: spatial dynamics of event runoff coefficients in Iran. Hydrological Sciences Journal, 68 (7), 954–966.
  • Jahanshahi, A., et al., 2021. Comparing spatial and temporal scales of hydrologic model parameter transfer: a guide to four climates of Iran. Journal of Hydrology, 603, 127099. Elsevier. doi:10.1016/J.JHYDROL.2021.127099
  • Jahanshahi, A., Patil, S.D., and Goharian, E., 2022. Identifying most relevant controls on catchment hydrological similarity using model transferability – a comprehensive study in Iran. Journal of Hydrology, 612, 128193. Elsevier. doi:10.1016/J.JHYDROL.2022.128193
  • James, A.L. and Roulet, N.T., 2007. Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrological Processes, 21 (25), 3391–3408. John Wiley & Sons, Ltd. doi:10.1002/HYP.6554
  • Kampf, S.K. and Lefsky, M.A., 2016. Transition of dominant peak flow source from snowmelt to rainfall along the Colorado Front range: historical patterns, trends, and lessons from the 2013 Colorado Front range floods. Water Resources Research, 52 (1), 407–422. John Wiley & Sons, Ltd. doi:10.1002/2015WR017784
  • Kay, A.L., et al., 2007. An investigation of site-similarity approaches to generalisation of a rainfall–runoff model. Hydrology and Earth System Sciences, 11 (1), 500–515. Copernicus GmbH. doi:10.5194/hess-11-500-2007
  • Keeping, E., 1962. Introduction to statistical inference. New York: Van Nostrand.
  • Krug, A., et al., 2020. On the temporal variability of widespread rain-on-snow floods. Meteorologische Zeitschrift, 29 (2), 147–163. Schweizerbart’sche Verlagsbuchhandlung. doi:10.1127/METZ/2020/0989
  • Martin, E.H., Kelleher, C., and Wagener, T., 2012. Has urbanization changed ecological streamflow characteristics in Maine (USA)? Respiratory Care, 57 (7), 1337–1354. Taylor & Francis. doi:10.1080/02626667.2012.707318
  • Mei, Y. and Anagnostou, E.N., 2015. A hydrograph separation method based on information from rainfall and runoff records. Journal of Hydrology, 523, 636–649. Elsevier. doi:10.1016/J.JHYDROL.2015.01.083
  • Merz, R. and Blöschl, G., 2003. A process typology of regional floods. Water Resources Research, 39 (12), 1–20. doi:10.1029/2002WR001952
  • Merz, R. and Blöschl, G., 2009a. A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, 45 (1), 1–19. doi:10.1029/2008WR007163
  • Merz, R. and Blöschl, G., 2009b. Process controls on the statistical flood moments: a data-based approach. Hydrological Processes, 23 (675–696), 675–696. doi:10.1002/hyp.7168
  • Merz, R., Blöschl, G., and Parajka, J., 2006. Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 331 (3–4), 591–604. doi:10.1016/j.jhydrol.2006.06.008
  • Merz, R., Parajka, J., and Blöschl, G., 2009. Scale effects in conceptual hydrological modeling. Water Resources Research, 45 (9), 1–15. doi:10.1029/2009WR007872
  • Merz, R., Parajka, J., and Blöschl, G., 2011. Time stability of catchment model parameters: implications for climate impact analyses. Water Resources Research, 47 (2), 1–17. doi:10.1029/2010WR009505
  • Nelson, J., 2018. Featured collection introduction: national flood interoperability experiment II. The Journal of the American Water Resources Association (JAWRA), 54 (1), 5–6. John Wiley & Sons, Ltd. doi:10.1111/1752-1688.12614
  • Norbiato, D., et al., 2009. Controls on event runoff coefficients in the eastern Italian Alps. Journal of Hydrology, 375 (3–4), 312–325. Elsevier B.V. doi:10.1016/j.jhydrol.2009.06.044
  • Rodríguez-Blanco, M.L., Taboada-Castro, M.M., and Taboada-Castro, M.T., 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57 (3), 445–459. doi:10.1080/02626667.2012.666351
  • Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20 (C), 53–65. North-Holland. doi:10.1016/0377-0427(87)90125-7
  • Samuel, J., Coulibaly, P., and Metcalfe, R.A., 2011. Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. Journal of Hydrologic Engineering, 16 (5), 447–459. American Society of Civil Engineers (ASCE). doi:10.1061/(asce)he.1943-5584.0000338
  • Seibert, S.P., et al., 2016. Exploring the interplay between state, structure and runoff behaviour of lower mesoscale catchments. Hydrology and Earth System Sciences Discussions, 10, 1–51. doi:10.5194/HESS-2016-109
  • Sikorska, A.E., Viviroli, D., and Seibert, J., 2015. Flood-type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resources Research, 51 (10), 7959–7976. John Wiley & Sons, Ltd. doi:10.1002/2015WR017326
  • Sivapalan, M., 2009. The secret to ‘doing better hydrological science’: change the question! Hydrological Processes, 23 (9), 1391–1396. John Wiley & Sons, Ltd. doi:10.1002/HYP.7242
  • Smith, J.A., et al., 2018. Strange floods: the upper tail of flood peaks in the United States. Water Resources Research, 54 (9), 6510–6542. John Wiley & Sons, Ltd. doi:10.1029/2018WR022539
  • Tarasova, L., Basso, S., and Merz, R., 2020. Transformation of generation processes from small runoff events to large floods. Geophysical Research Letters, 47 (22), e2020GL090547. John Wiley & Sons, Ltd. doi:10.1029/2020GL090547
  • Tarasova, L., et al., 2018a. Exploring Controls on rainfall–runoff events: 2. regional patterns and spatial controls of event characteristics in Germany. Water Resources Research, 54 (10), 7688–7710. doi:10.1029/2018WR022588
  • Tarasova, L., et al., 2018b. Exploring controls on rainfall–runoff events: 1. time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resources Research, 54 (10), 7711–7732. doi:10.1029/2018WR022587
  • Tarasova, L., et al., 2019. Causative classification of river flood events. WIREs Water, 6 (4), 1–23. doi:10.1002/wat2.1353
  • Thiessen, A., 1911. Precipitation averages for large areas. Monthly Weather Review, 39 (7), 1082–1084. Available from: https://journals.ametsoc.org/view/journals/mwre/39/7/1520-0493_1911_39_1082b_pafla_2_0_co_2.xml
  • Trudeau, M.P. and Richardson, M., 2015. Change in event-scale hydrologic response in two urbanizing watersheds of the Great Lakes St Lawrence basin 1969–2010. Journal of Hydrology, 523, 650–662. Elsevier. doi:10.1016/J.JHYDROL.2015.01.069
  • Viglione, A., et al., 2010a. Quantifying space-time dynamics of flood event types. Journal of Hydrology, 394 (1–2), 213–229. doi:10.1016/J.JHYDROL.2010.05.041
  • Viglione, A., et al., 2010b. Generalised synthesis of space–time variability in flood response: an analytical framework. Journal of Hydrology, 394 (1–2), 198–212. Elsevier. doi:10.1016/J.JHYDROL.2010.05.047
  • Vinze, P. and Azam, M.F., 2023. On the transferability of snowmelt runoff model parameters: discharge modeling in the Chandra-Bhaga basin, western Himalaya. Frontiers in Water, 4, 1086557. Frontiers Media S.A. doi:10.3389/FRWA.2022.1086557/BIBTEX
  • Wasko, C. and Nathan, R., 2019. Influence of changes in rainfall and soil moisture on trends in flooding. Journal of Hydrology, 575, 432–441. Elsevier. doi:10.1016/J.JHYDROL.2019.05.054
  • Woldemeskel, F. and Sharma, A., 2016. Should flood regimes change in a warming climate? The role of antecedent moisture conditions. Geophysical Research Letters, 43 (14), 7556–7563. John Wiley & Sons, Ltd. doi:10.1002/2016GL069448
  • Yan, L., et al., 2023. Flood frequency analysis using mixture distributions in light of prior flood type classification in Norway. Remote Sensing, 15 (2), 401. Multidisciplinary Digital Publishing Institute. doi:10.3390/RS15020401

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.