106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing water storage variations in La Plata basin and sub-basins from GRACE, global models data and connection with ENSO events

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1012-1031 | Received 31 May 2023, Accepted 09 Apr 2024, Published online: 30 May 2024

References

  • Abd-Elbaky, M. and Jin, S., 2019. Hydrological mass variations in the Nile River Basin from GRACE and hydrological models. Geodesy and Geodynamics, 10 (6), 430–438. doi:10.1016/j.geog.2019.07.004.
  • Abelen, S., et al., 2015. Droughts and floods in the La Plata Basin in soil moisture data and GRACE. Remote Sensing, 7 (6), 7324–7349. doi:10.3390/rs70607324.
  • Abrial, E., et al., 2021. Hydroecological implication of long-term flow variations in the middle Paraná river floodplain. Journal of Hydrology, 603 (November 2020), 126957. doi:10.1016/j.jhydrol.2021.126957.
  • Alves Costa, S.M., de Matos, A.C.O.C., and Blitzkow, D., 2012. Validation of the land water storage from gravity recovery and climate experiment (GRACE) with gauge data in the Amazon Basin. Boletim de Ciencias Geodesicas, 18 (2), 262–281. doi:10.1590/S1982-21702012000200006.
  • Antico, A., Schlotthauer, G., and Torres, M.E., 2014. Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: application to the Paraná River Basin. Journal of Geophysical Research, 119 (3), 1218–1233. doi:10.1002/2013JD020420.
  • Antico, A. and Vuille, M., 2022. ENSO and Paraná flow variability: long-term changes in their connectivity. International Journal of Climatology, 42 (14), 7269–7279. doi:10.1002/joc.7643.
  • Awange, J.L., et al., 2014. Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Advances in Water Resources, 74, 64–78. doi:10.1016/j.advwatres.2014.07.012.
  • Barros, V., et al., 2004. The major discharge events in the Paraguay River: magnitudes, source regions, and climate forcings. Journal of Hydrometeorology, 5 (6), 1161–1170. doi:10.1175/JHM-378.1.
  • Beck, H.E., et al., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5 (1), 1–12. doi:10.1038/sdata.2018.214.
  • Bello, E., Rucks, J., and Springer, C., 2009. Confronting the challenges of climate variability and change through an integrated strategy for the sustainable management of the La Plata River Basin. In: UNESCO ed. United Nations World Water Development Report 3: Water in a Changing World.
  • Berbery, E.H. and Barros, V.R., 2002. The hydrologic cycle of the La Plata basin in South America. Journal of Hydrometeorology, 3 (6), 630–645. doi:10.1175/1525-7541(2002)003<0630:THCOTL&#x003E2.0.CO;2.
  • Bibi, S., et al., 2021. Effects of climate change on terrestrial water storage and basin discharge in the lancang River Basin. Journal of Hydrology: Regional Studies, 37 (September), 100896. doi:10.1016/j.ejrh.2021.100896.
  • Bischoff, S.A., et al., 2000. Climatic variability and Uruguay river flows. Water International, 25 (3), 446–456. doi:10.1080/02508060008686852.
  • Bolaños, S., et al., 2021. GRACE reveals depletion of water storage in northWestern South America between ENSO extremes. Journal of Hydrology, 596, 125687. doi:10.1016/j.jhydrol.2020.125687.
  • Caffera, R.M. and Berbery, E.H., 2016. Climatología de la Cuenca del Plata. In: V. Barros, R. Clarke, and P. Silva Dias, eds. El Cambio Climático en la Cuenca del Plata. Ciudad Autónoma de Buenos Aires: CONICET, 19–36.
  • Cai, W., et al., 2020. Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth and Environment, 1 (4), 215–231. doi:10.1038/s43017-020-0040-3.
  • Camilloni, I.A. and Barros, V.R., 2003. Extreme discharge events in the Paraná River and their climate forcing. Journal of Hydrology, 278 (1–4), 94–106. doi:10.1016/S0022-1694(03)00133-1.
  • Chen, J.L., et al., 2005. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophysical Research Letters, 32 (14), 1–4. doi:10.1029/2005GL022964.
  • Chen, J.L., et al., 2006. Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. Journal of Geodesy, 81 (4), 237–245. doi:10.1007/s00190-006-0104-2.
  • Chen, J.L., et al., 2010. Recent La Plata basin drought conditions observed by satellite gravimetry. Journal of Geophysical Research, 115 (D22), 1–12. doi:10.1029/2010JD014689.
  • Comité Intergubernamental Coordinador de los Países de la Cuenca del Plata CIC, 2017. Análisis diagnóstico transfronterizo de la Cuenca del Plata ADT. 1st ed. Ciudad Autónoma de Buenos Aires: Comité Intergubernamental Coordinador de los Países de la Cuenca del Plata CIC-Organización de los Estados Americanos - OEA.
  • Cornero, C., et al., 2017. Analysis of water mass variation in wetlands using data from GRACE satellite mission: the Pantanal case. Revista Brasileira de Geofisica, 35 (4), 307–321. doi:10.22564/RBGF.V35I4.786.
  • Cornero, C., et al., 2021. Monitoreo de la variación del almacenamiento de agua en la cuenca del Medio y Bajo Paraná a partir de datos GRACE, GRACE FO, TRMM y GLDAS. Revista de Teledetección, 58 (58), 53. doi:10.4995/raet.2021.15211.
  • Coronel, G., Menéndez, A., Chamorro, L., 2006. Fisiografía e Hidrología de la Cuenca del Plata. In: V. Barros, R. Clarke and P. Silva Dias, eds. El Cambio Climático en la Cuenca del Plata. Ciudad Autónoma de Buenos Aires: CONICET, 49–64.
  • Crowley, J.W., et al., 2007. Annual variations in water storage and precipitation in the Amazon Basin. Journal of Geodesy, 82 (1), 9–13. doi:10.1007/s00190-007-0153-1.
  • Doyle, M.E. and Barros, V.R., 2011. Attribution of the river flow growth in the Plata Basin. International Journal of Climatology, 31 (15), 2234–2248. doi:10.1002/joc.2228.
  • Frappart, F., et al., 2012. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environmental Research Letters, 7 (4), 044010. doi:10.1088/1748-9326/7/4/044010.
  • Frappart, F., Ramillien, G., and Ronchail, J., 2013a. Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. International Journal of Climatology, 33 (14), 3029–3046. doi:10.1002/joc.3647.
  • Frappart, F., Seoane, L., and Ramillien, G., 2013b. Validation of GRACE-derived terrestrial water storage from a regional approach over South America. Remote Sensing of Environment, 137 (March 2016), 69–83. doi:10.1016/j.rse.2013.06.008.
  • Freedman, F.R., Pitts, K.L., and Bridger, A.F.C., 2014. Evaluation of CMIP climate model hydrological output for the Mississippi River Basin using GRACE satellite observations. Journal of Hydrology, 519 (PD), 3566–3577. doi:10.1016/j.jhydrol.2014.10.036.
  • Garreaud, R.D., et al., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281 (3–4), 180–195. doi:10.1016/j.palaeo.2007.10.032.
  • Getirana, A., 2016. Extreme water deficit in Brazil detected from space. Journal of Hydrometeorology, 17 (2), 591–599. doi:10.1175/JHM-D-15-0096.1.
  • Gonçalves, R.D., et al., 2020. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: the urucuia aquifer system. Science of the Total Environment, 705, 135845. doi:10.1016/j.scitotenv.2019.135845.
  • Grimm, A.M., Barros, V.R., and Doyle, M.E., 2000. Climate variability in Southern South America associated with El Niño and La Niña events. Journal of Climate, 13 (1), 35–58. doi:10.1175/1520-0442(2000)013<0035:CVISSA&#x003E2.0.CO;2.
  • Hamilton, S.K., Sippel, S.J., and Melack, J.M., 2002. Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research: Atmospheres, 107 (20), LBA 5-1-LBA 5–14. doi:10.1029/2000JD000306.
  • Hassan, A. and Jin, S., 2016. Water storage changes and balances in Africa observed by GRACE and hydrologic models. Geodesy and Geodynamics, 7 (1), 39–49. doi:10.1016/j.geog.2016.03.002.
  • Huang, Y., et al., 2013. Analysis of long-term terrestrial water storage variations in the Yangtze River basin. Hydrology and Earth System Sciences, 17 (5), 1985–2000. doi:10.5194/hess-17-1985-2013.
  • Huffman, G.J., 1997. Estimates of root-mean-square random error for finite samples of estimated precipitation. Journal of Applied Meteorology, 36 (9), 1191–1201. doi:10.1175/1520-0450(1997)036<1191:EORMSR&#x003E2.0.CO;2.
  • Huffman, G.J., et al., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8 (1), 38–55. doi:10.1175/JHM560.1.
  • Huffman, G.J., et al., 2010. The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, 20. doi:10.1007/978-90-481-2915-7.
  • Klees, R., et al., 2008. A comparison of global and regional GRACE models for land hydrology. Surveys in Geophysics, 29 (4–5), 335–359. doi:10.1007/s10712-008-9049-8.
  • Landerer, F., et al., 2022. GRACE follow-on science data system newsletter: vol. Jul-Sep (Issue 22). Available from: https://www.gfz-potsdam.de/fileadmin/gfz/sec12/pdf/GRACE-FO/GRACE_FO_SDS_newsletter_No22.pdf [ Accessed 10 March 2023].
  • Landerer, F.W. and Swenson, S.C., 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48 (4), 1–11. doi:10.1029/2011WR011453.
  • Larkin, N.K. and Harrison, D.E., 2005. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophysical Research Letters, 32 (16), 1–4. doi:10.1029/2005GL022860.
  • Li, B., 2019. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55 (9), 7564–7586. doi:10.1029/2018WR024618.
  • Li, B., Beaudoing, H., and Rodell, M., 2020. GLDAS catchment land surface model L4 daily 0.25 x 0.25 degree GRACE-DA1 V2.2, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available from: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/summary [ Accessed 8 June 2021].
  • Mallakpour, I. and Villarini, G., 2016. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal, 61 (2), 245–254. doi:10.1080/02626667.2015.1008482.
  • Matos, A., et al., 2012. Analysis of water level variations in Brazilian basins using GRACE. Journal of Geodetic Science, 2 (2), 76–87. doi:10.2478/v10156-011-0034-7.
  • Mechoso, C.R., et al., 2001. Climatology and hydrology of the plata basin. Document of VAMOS Scientific Study Group on the Plata Basin. CLIVAR. Available from: https://www.clivar.org/sites/default/files/documents/vamos/laplata.pdf [ Accessed 25 October 2020].
  • Militino, A.F., Moradi, M., and Ugarte, M.D., 2020. On the performances of trend and change-point detection methods for remote sensing data. Remote Sensing, 12 (6), 1–25. doi:10.3390/rs12061008.
  • Moghim, S., 2020. Assessment of water storage changes using GRACE and GLDAS. Water Resources Management, 34 (2), 685–697. doi:10.1007/s11269-019-02468-5.
  • Morishita, Y. and Heki, K., 2008. Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE. Earth and Planetary Science Letters, 272 (3–4), 677–682. doi:10.1016/j.epsl.2008.06.003.
  • Ndehedehe, C., et al., 2016. Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Advances in Water Resources, 88, 211–230. doi:10.1016/j.advwatres.2015.12.009.
  • Ndehedehe, C.E. and Ferreira, V.G., 2019. Identifying the footprints of global climate modes in time-variable gravity hydrological signals. Climatic Change. doi:10.1007/s10584-019-02588-2.
  • Ndehedehe, C.E. and Ferreira, V.G., 2020. Assessing land water storage dynamics over South America. Journal of Hydrology, 580, 124339. doi:10.1016/j.jhydrol.2019.124339.
  • Ni, S., et al., 2018. Global terrestrial water storage changes and connections to ENSO events. Surveys in Geophysics, 39 (1), 1–22. doi:10.1007/s10712-017-9421-7.
  • Nobre, C.A., et al., 2016. Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection, 8 (2), 252–262. doi:10.4236/jwarp.2016.82022.
  • Paredes-Beltran, B., et al., 2021a. A continental assessment of reservoir storage and water availability in South America. Water (Switzerland), 13 (14), 1–24. doi:10.3390/w13141992.
  • Paredes-Beltran, B., Sordo-Ward, A., and Garrote, L., 2021b. Dataset of Georeferenced Dams in South America (DDSA). Earth System Science Data, 13 (2), 213–229. doi:10.5194/essd-13-213-2021.
  • Pereira, A., et al., 2012. Water storage changes from GRACE data in the La Plata Basin. International Association of Geodesy Symposia, 136, 613–618. doi:10.1007/978-3-642-20338-1_75.
  • Pereira, A., et al., 2019. Study of water storage variations at the Pantanal wetlands area from GRACE monthly mass grids. Journal of Geodetic Science, 9 (1), 133–143. doi:10.1515/jogs-2019-0013.
  • Pereira, A. and Pacino, M.C., 2012. Annual and seasonal water storage changes detected from GRACE data in the La Plata Basin. Physics of the Earth and Planetary Interiors, 212–213, 88–99. doi:10.1016/j.pepi.2012.09.005.
  • Phillips, T., et al., 2012. The influence of ENSO on global terrestrial water storage using GRACE. Geophysical Research Letters, 39 (16), 1–7. doi:10.1029/2012GL052495.
  • Ramillien, G.L., et al., 2012. Constrained regional recovery of continental water mass time-variations from GRACE-based geopotential anomalies over South America. Surveys in Geophysics, 33 (5), 887–905. doi:10.1007/s10712-012-9177-z.
  • Ramillien, G.L., et al., 2015. Sequential estimation of surface water mass changes from daily satellite gravimetry data. Journal of Geodesy, 89 (3), 259–282. doi:10.1007/s00190-014-0772-2.
  • Ramillien, G., Frappart, F., and Seoane, L., 2016. Space gravimetry using GRACE satellite mission: basic concepts. Microwave Remote Sensing of Land Surfaces: Techniques and Methods, 285–302. doi:10.1016/B978-1-78548-159-8.50006-2.
  • Rodell, M., et al., 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85 (3), 381–394. doi:10.1175/BAMS-85-3-381.
  • Rodell, M., et al., 2007. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15 (1), 159–166. doi:10.1007/s10040-006-0103-7.
  • Rowlands, D.D., 2005. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophysical Research Letters, 32 (4), 2–5. doi:10.1029/2004GL021908.
  • Rowlands, D.D., et al., 2010. Global mass flux solutions from GRACE: a comparison of parameter estimation strategies—mass concentrations versus Stokes coefficients. Journal of Geophysical Research, 115 (B1), 1–19. doi:10.1029/2009jb006546.
  • Sabaka, T.J., et al., 2010. Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. Journal of Geophysical Research: Solid Earth, 115 (11), 1–20. doi:10.1029/2010JB007533.
  • Saguier, M., et al., 2021. Interdisciplinary research networks and science-policy-society interactions in the Uruguay River Basin. Environmental Development, 38 (December 2020), 11. doi:10.1016/j.envdev.2020.100601.
  • Save, H., Bettadpur, S., and Tapley, B.D., 2016. High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 3782–3803. doi:10.1002/2016JB013007.
  • Scanlon, B.R., et al., 2016. Global evaluation of new GRACE mascon products for hydrologic applications. Journal of the American Water Resources Association, 52 (12), 9412–9429. doi:10.1111/j.1752-1688.1969.tb04897.x.
  • Servicio Meteorológico Nacional SMN, 2008. Boletín Climatológico Diciembre 2008. Programa de Vigilancia Del Clima En La Argentina y Región Subantártica Adyacente, XX (12), 28.
  • Servicio Meteorológico Nacional SMN, 2009a. Boletín Climatológico Noviembre 2009. Programa de Vigilancia Del Clima En La Argentina y Región Subantártica Adyacente, XXI (11), 34.
  • Servicio Meteorológico Nacional SMN, 2009b. Boletín Climatológico Otoño 2009. Programa de Vigilancia Del Clima En La Argentina y Región Subantártica Adyacente, 1, 23.
  • Servicio Meteorológico Nacional SMN, 2010. Boletín Climatológico Junio 2010. Programa de Vigilancia Del Clima En La Argentina y En La Región Subantártica Adyacente, XXII (6), 29.
  • Singh, A.K., et al., 2017. Estimation of quantitative measures of total water storage variation from GRACE and GLDAS-NOAH satellites using geospatial technology. Quaternary International, 444, 191–200. doi:10.1016/j.quaint.2017.04.014.
  • Siqueira, V.A., et al., 2018. Toward continental hydrologic-hydrodynamic modeling in South America. Hydrology and Earth System Sciences, 22 (9), 4815–4842. doi:10.5194/hess-22-4815-2018.
  • Slater, L.J., et al., 2021. Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. Hydrology and Earth System Sciences, 25 (7), 3897–3935. doi:10.5194/hess-25-3897-2021.
  • Sun, Z., et al., 2020. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 Basins. Water Resources Research, 56 (4), 1–21. doi:10.1029/2019WR026250.
  • Syed, T.H., et al., 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44 (2). doi:10.1029/2006WR005779.
  • Tapley, B.D., et al., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31 (9), 1–4. doi:10.1029/2004GL019920.
  • Tropical Rainfall Measuring Mission (TRMM), 2011. TRMM (TMPA/3B43) rainfall estimate L3 1 month 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth. Sciences Data and Information Services Center (GES DISC). Available from: https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary [ Accessed 19 July 2020].
  • Vargas, W.M., et al., 2010. Runoff properties of extreme discharges on Parana and Uruguay rivers. Hydrology and Earth System Sciences Discussions, 7 (1998), 2949–2973. doi:10.5194/hessd-7-2949-2010.
  • Vaz de Almeida, F.G., et al., 2012. Time-variations of equivalent water heights’from Grace Mission and in-situ river stages in the Amazon basin. Acta Amazonica, 42 (1), 125–134. doi:10.1590/s0044-59672012000100015.
  • Villarini, G., et al., 2009a. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 45 (8), 1–17. doi:10.1029/2008WR007645.
  • Villarini, G., et al., 2009b. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 45 (8), 1–17. doi:10.1029/2008WR007645.
  • Vishwakarma, B.D., et al., 2021. Re-assessing global water storage trends from GRACE time series. Environmental Research Letters, 16 (3), 34005. doi:10.1088/1748-9326/abd4a9.
  • Wahr, J., 2004. Time-variable gravity from GRACE: first results. Geophysical Research Letters, 31 (11), 20–23. doi:10.1029/2004GL019779.
  • Wahr, J., Molenaar, M., and Bryan, F., 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103 (B12), 30205–30229. doi:10.1029/98jb02844.
  • Watkins, M.M., et al., 2015. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120 (4), 2648–2671. doi:10.1002/2014JB011547.
  • Wessel, P., et al., 2019. The generic mapping tools version 6. Geochemistry Geophysics Geosystems, 20 (11), 5556–5564. doi:10.1029/2019GC008515.
  • Xavier, L., et al., 2010. Interannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sensing of Environment, 114 (8), 1629–1637. doi:10.1016/j.rse.2010.02.005.
  • Xiong, J., et al., 2021. Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites. Journal of Hydrology, 599 (March), 126308. doi:10.1016/j.jhydrol.2021.126308.
  • Zhang, Z., et al., 2015. Terrestrial water storage anomalies of Yangtze river basin droughts observed by GRACE and connections with ENSO. Global and Planetary Change, 126, 35–45. doi:10.1016/j.gloplacha.2015.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.