135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Artificial intelligence applications in the field of streamflow: a bibliometric analysis of recent trends

ORCID Icon
Pages 1141-1157 | Received 29 Nov 2023, Accepted 24 Apr 2024, Published online: 06 Jun 2024

References

  • Adamowski, J.F., 2008. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology, 353 (3–4), 247–266. doi:10.1016/j.jhydrol.2008.02.013.
  • Adisa, O.M., et al., 2020. Bibliometric analysis of methods and tools for drought monitoring and prediction in Africa. Sustainability (Switzerland), 12 (16), 6516. doi:10.3390/su12166516.
  • Adnan, R.M., et al., 2017. Streamflow forecasting using artificial neural network and support vector machine models. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 29 (1), 286–294.
  • Afan, H.A., et al., 2016. Past, present and prospect of an artificial intelligence (AI) based model for sediment transport prediction. Journal of Hydrology, 541, 902–913. doi:10.1016/j.jhydrol.2016.07.048.
  • Anctil, F. and Tape, D.G., 2004. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science, 3, 121–128. doi:10.1139/s03-071.
  • Apaydin, H., et al., 2021. Artificial intelligence modelling integrated with singular spectral analysis and seasonal-trend decomposition using loess approaches for streamflow predictions. Journal of Hydrology, 600, 126506. doi:10.1016/j.jhydrol.2021.126506.
  • Arabameri, A., et al., 2020. Novel ensemble of MCDM-artificial intelligence techniques for groundwater-potential mapping in arid and semi-arid regions (Iran). Remote Sensing, 12 (3), 490. doi:10.3390/rs12030490.
  • Ara Rahman, S. and Chakrabarty, D., 2020. Sediment transport modelling in an alluvial river with artificial neural network. Journal of Hydrology, 588, 125056. doi:10.1016/j.jhydrol.2020.125056.
  • Aria, M. and Cuccurullo, C., 2017. bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11 (4), 959–975. doi:10.1016/j.joi.2017.08.007.
  • Baffaut, C. and Delleur, J.W., 1989. Calibrating SWMM runoff quality model with an expert system. In: Sixth Conference on Computing in Civil Engineering. Atlanta, GA, USA: ASCE, 124–130.
  • Bibliometrix, Biblioshiny [online]. K-Synth Srl, Academic Spin-Off of the University of Naples Federico II, Naples, Italy. Available from: https://www.bibliometrix.org/home/ [ Accessed 5 May 2023].
  • Buyukyildiz, M., Tezel, G., and Yilmaz, V., 2014. Estimation of the change in lake water level by artificial intelligence methods. Water Resources Management, 28 (13), 4747–4763. doi:10.1007/s11269-014-0773-1.
  • Chau, K.W., 2006. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology, 329 (3–4), 363–367. doi:10.1016/j.jhydrol.2006.02.025.
  • Chen, C., 2006. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57 (3), 359–377. doi:10.1002/asi.20317.
  • Chen, W., et al., 2020. Groundwater spring potential mapping using artificial intelligence approach based on kernel logistic regression, random forest, and alternating decision tree models. Applied Sciences, 10 (2), 425. doi:10.3390/app10020425.
  • Chen, K. and Guan, J., 2011. A bibliometric investigation of research performance in emerging nanobiopharmaceuticals. Journal of Informetrics, 5 (2), 233–247. doi:10.1016/j.joi.2010.10.007.
  • Cobo, M.J., et al., 2012. SciMAT: a new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63 (8), 1609–1630. doi:10.1002/asi.22688.
  • Daniel, T.M., 1991. Neural networks-applications in hydrology and water resources engineering. In: Proceeding International Hydrology and Water Resources. Perth, Australia: Institution of Engineers.
  • Dawson, C.W., et al., 2006. Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England. Neural Networks, 19 (2), 236–247. doi:10.1016/j.neunet.2006.01.009.
  • Dawson, C.W. and Wilby, R., 2009. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal, 43 (1), 47–66. doi:10.1080/02626669809492102.
  • Dawson, C.W. and Wilby, R.L., 2016. Hydrological modelling using artificial neural networks. Progress in Physical Geography: Earth and Environment, 25 (1), 80–108. doi:10.1177/030913330102500104.
  • Delleur, J.W. and Baffaut, C., 1988. Front end expert system for the calibration of SWMM runoff block. In: Critical Water Issues and Computer Applications: Proceedings of the 15th Annual Water Resources Conference. Norfolk, VA, USA: ASCE, 187–190.
  • Donthu, N., et al., 2021a. How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research, 133, 285–296. doi:10.1016/j.jbusres.2021.04.070.
  • Donthu, N., et al., 2021b. Forty years of the international journal of information management: a bibliometric analysis. International Journal of Information Management, 57, 102307. doi:10.1016/j.ijinfomgt.2020.102307.
  • Engman, E.T., 1988. Diagnostic strategies of an expert system for simulating snowmelt runoff. In: Planning Now for Irrigation and Drainage in the 21st Century. Lincoln, NE, USA: ASCE, 242–249.
  • Engman, E.T., Rango, A., and Martinec, J., 1986. Expert system for snowmelt runoff modeling and forecasting. In: Water Forum ‘86: World Water Issues in Evolution, Proceedings of the Conference. Long Beach, CA, USA: ASCE, 174–180.
  • Frame, J.D., 1977. Mainstream research in Latin America and Caribbean. Interciencia, 2 (2), 143–148.
  • Gorzeń-Mitka, I. and Wieczorek-Kosmala, M., 2023. Mapping the energy sector from a risk management research perspective: a bibliometric and scientific approach. Energies, 16 (4), 2024. doi:10.3390/en16042024.
  • Govindaraju, R.S., 2000. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, 5 (2), 124.
  • Guo, Q., et al., 2022. Applications of artificial intelligence in the field of air pollution: a bibliometric analysis. Frontiers in Public Health, 10, 933665. doi:10.3389/fpubh.2022.933665.
  • He, Z., et al., 2014. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509, 379–386. doi:10.1016/j.jhydrol.2013.11.054.
  • Herrera-Franco, G., et al., 2021. Worldwide research on socio-hydrology: a bibliometric analysis. Water, 13 (9), 1283. doi:10.3390/w13091283.
  • Hmoud Al-Adhaileh, M. and Waselallah Alsaade, F., 2021. Modelling and prediction of water quality by using artificial intelligence. Sustainability (Switzerland), 13 (8), 4259. doi:10.3390/su13084259.
  • Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735.
  • Hsu, K.L., Gupta, H.V., and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall‐runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955.
  • Hu, X. and Rousseau, R., 2009. A comparative study of the difference in research performance in biomedical fields among selected Western and Asian countries. Scientometrics, 81 (2), 475–491. doi:10.1007/s11192-008-2202-9.
  • Ibrahim, K.S.M.H., et al., 2022. A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting. Alexandria Engineering Journal, 61 (1), 279–303. doi:10.1016/j.aej.2021.04.100.
  • Jain, A. and Kumar, A.M., 2007. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7 (2), 585–592. doi:10.1016/j.asoc.2006.03.002.
  • Jothiprakash, V. and Magar, R.B., 2012. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. Journal of Hydrology, 450-451, 293–307. doi:10.1016/j.jhydrol.2012.04.045
  • Katy, B., Chaomei, C., and Kevin, W.B., 2005. Visualizing knowledge domains. Annual Reviews in Environmental Science and Technology, 37 (2003), 179–255.
  • Kent Baker, H., et al., 2020. A bibliometric analysis of board diversity: current status, development, and future research directions. Journal of Business Research, 108, 232–246. doi:10.1016/j.jbusres.2019.11.025.
  • Kia, M.B., et al., 2011. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67 (1), 251–264. doi:10.1007/s12665-011-1504-z.
  • Kim, T., et al., 2021. Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: a case study of four watersheds with different hydro-climatic regions across the CONUS. Journal of Hydrology, 598, 126423. doi:10.1016/j.jhydrol.2021.126423.
  • Kişi, Ö., 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12 (5), 532–539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532).
  • Kratzert, F., et al., 2018. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22 (11), 6005–6022. doi:10.5194/hess-22-6005-2018.
  • Kumar, A., Shivarama, J., and Choukimath, P.A., 2015. Popular scientometric analysis, mapping and visualisation softwares: an overview. In: 10th International CABLIBER-2015 HP Univ., India, IIAS, Shimla, Himachal Pradesh.
  • Lecun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521 (7553), 436–444. doi:10.1038/nature14539.
  • Lin, J.-Y., Cheng, C.-T., and Chau, K.-W., 2010. Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51 (4), 599–612. doi:10.1623/hysj.51.4.599.
  • Luk, K.C., Ball, J.E., and Sharma, A., 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology, 227, 56–57. doi:10.1016/S0022-1694(99)00165-1.
  • Maier, H.R., 2013. Commentary: what constitutes a good literature review and why does its quality matter? Environmental Modelling and Software, 43, 3–4. doi:10.1016/j.envsoft.2013.02.004.
  • Maksimovic, C. and Radojkovic, M. 1989. Computational modelling and experimental methods in hydraulics. In: Hydrocomp ’89. Dubrovnik
  • Maroufpoor, S., Bozorg-Haddad, O., and Maroufpoor, E., 2020. Reference evapotranspiration estimating based on optimal input combination and hybrid artificial intelligent model: hybridization of artificial neural network with grey wolf optimizer algorithm. Journal of Hydrology, 588, 125060. doi:10.1016/j.jhydrol.2020.125060.
  • Mehdizadeh, S., 2018. Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: offering a new approach for lagged ETo data-based modeling. Journal of Hydrology, 559, 794–812. doi:10.1016/j.jhydrol.2018.02.060.
  • Meshram, S.G., et al., 2021. Streamflow prediction based on artificial intelligence techniques. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46 (3), 2393–2403. doi:10.1007/s40996-021-00696-7.
  • Minns, A.W. and Hall, M.J., 2009. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41 (3), 399–417. doi:10.1080/02626669609491511.
  • Mohammadi, B., et al., 2021. Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Environmental Science and Pollution Research, 28 (46), 65752–65768. doi:10.1007/s11356-021-15563-1.
  • Moleod, A.I., 1977. Improved Box–Jenkins estimators. Biometrika, 64 (3), 531–534. doi:10.1093/biomet/64.3.531.
  • Morris, S.A. and Martens, B.V.D.V., 2009. Mapping research specialties. Annual Reviews in Environmental Science and Technology, 42 (2008), 213–295.
  • Niu, J., et al., 2016. Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5 (5), 66. doi:10.3390/ijgi5050066.
  • Nourani, V., et al., 2014. Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358–377. doi:10.1016/j.jhydrol.2014.03.057.
  • Nourani, V., Komasi, M., and Mano, A., 2009. a multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resources Management, 23 (14), 2877–2894. doi:10.1007/s11269-009-9414-5.
  • Özdoğan-Sarikoç, G., et al., 2023. Reservoir volume forecasting using artificial intelligence-based models: artificial neural networks, support vector regression, and long short-term memory. Journal of Hydrology, 616, 128766. doi:10.1016/j.jhydrol.2022.128766.
  • Patel, A., et al., 2023. Review of artificial intelligence and internet of things technologies in land and water management research during 1991–2021: a bibliometric analysis. Engineering Applications of Artificial Intelligence, 123, 106335. doi:10.1016/j.engappai.2023.106335.
  • Persson, O., Danell, R., and Schneider, J.W., 2009. How to use Bibexcel for various types of bibliometric analysis. Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at His 60th Birthday, 5, 9–24.
  • Phong, T.V., et al., 2021. Groundwater potential mapping using GIS -based hybrid artificial intelligence methods. Groundwater, 59 (5), 745–760. doi:10.1111/gwat.13094.
  • Rotmans, J. and Van Asselt, M., 1996. Integrated assessment: a growing child on its way to maturity. Climatic Change, 34, 327–336. doi:10.1007/BF00139296.
  • Sang, Y.-F., 2013. Improved wavelet modeling framework for hydrologic time series forecasting. Water Resources Management, 27 (8), 2807–2821. doi:10.1007/s11269-013-0316-1.
  • Schubert, A. and Braun, T., 1986. Relative indicators and relational charts for comparative assessment ofpublicationoutput and citationimpact. Scientometrics, 9 (5/6), 281–291. doi:10.1007/BF02017249.
  • SCI2TEAM, 2009. Science of science (Sci2) tool. Indiana University and SciTech Strategies. Available from: https://sci2.cns.iu.edu [ online].
  • Seo, Y., et al., 2015. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520, 224–243. doi:10.1016/j.jhydrol.2014.11.050.
  • Shamim, M.A., et al., 2015. A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE Journal of Civil Engineering, 20 (2), 971–977. doi:10.1007/s12205-015-0298-z.
  • Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology, 199, 272–294. doi:10.1016/S0022-1694(96)03330-6.
  • Shukla, A.K., et al., 2019. Engineering applications of artificial intelligence: a bibliometric analysis of 30 years (1988–2018). Engineering Applications of Artificial Intelligence, 85, 517–532. doi:10.1016/j.engappai.2019.06.010.
  • Solomatine, D.P. and Dulal, K.N., 2003. Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrological Sciences Journal, 48 (3), 399–411. doi:10.1623/hysj.48.3.399.45291.
  • Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S., 2002. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes, 16 (6), 1325–1330. doi:10.1002/hyp.554.
  • Tague-Sutcliffe, J., 1992. An introduction to informetrics. Information Processing & Management, 28, 1–3. doi:10.1016/0306-4573(92)90087-G.
  • Tao, H., et al., 2024. Hybridized artificial intelligence models with nature-inspired algorithms for river flow modeling: a comprehensive review, assessment, and possible future research directions. Engineering Applications of Artificial Intelligence, 129, 107559.
  • Taylor, J.G., 1996. Neural networks and their applications. United Kingdom: Wiley.
  • Tiyasha, T.M. and Yaseen, Z.M., 2020. A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585, 124670.
  • Todini, E., 1992. From Real-Time Flood Forecasting to Comprehensive Flood Risk Management Decision Support Systems. In: A.J. Saul, ed. Floods and Flood Management. Fluid Mechanics and its Applications, vol 15. Springer, Dordrecht: Fluid Mechanics and its Applications, 313–326.
  • Tokar, A.S. and Johnson, P.A., 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4 (3), 232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232).
  • Toth, E., Brath, A., and Montanari, A., 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology, 239, 132–147. doi:10.1016/S0022-1694(00)00344-9.
  • Valverde Ramírez, M.C., De Campos Velho, H.F., and Ferreira, N.J., 2005. Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology, 301 (1–4), 146–162. doi:10.1016/j.jhydrol.2004.06.028.
  • Van Eck, N.J. and Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84 (2), 523–538. doi:10.1007/s11192-009-0146-3.
  • Van Eck, N.J. and Waltman, L., 2014. CitNetExplorer: a new software tool for analyzing and visualizing citation networks. Journal of Informetrics, 8 (4), 802–823. doi:10.1016/j.joi.2014.07.006.
  • Vantagepoint, [online]. Available from: https://www.thevantagepoint.com/ [ Accessed 22 May 2023].
  • Vinio, F., Simons, D.B., and Simons, R.K. 1989. Knowledge-based expert system for the real-time operation of reservoir systems. In: Proceedings of the International Conference on Hydropower. Niagara Falls, NY, USA, 1770–1780.
  • Wang, W.-C., et al., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374 (3–4), 294–306. doi:10.1016/j.jhydrol.2009.06.019.
  • Wang, M.-H., Li, J., and Ho, Y.-S., 2011. Research articles published in water resources journals: a bibliometric analysis. Desalination and Water Treatment, 28, 353–365. doi:10.5004/dwt.2011.2412.
  • William, J. and Alan, D., 1986. Integrated conceptual expert system for flood and water pollution management. In: Water Forum ‘86: World Water Issues in Evolution, Proceedings of the Conference. Long Beach, CA, USA: ASCE, 158–165.
  • Wu, C.L. and Chau, K.W., 2011. Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399 (3–4), 394–409. doi:10.1016/j.jhydrol.2011.01.017.
  • Wu, C.L., Chau, K.W., and LI, Y.S., 2009. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resources Research, 45 (8). doi:10.1029/2007WR006737.
  • Yaseen, Z.M., et al., 2015. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. doi:10.1016/j.jhydrol.2015.10.038.
  • Yifru, B.A., Lim, K.J., and Lee, S., 2024. Enhancing streamflow prediction physically consistently using process-based modeling and domain knowledge: a review. Sustainability (Switzerland), 16 (4), 1376. doi:10.3390/su16041376.
  • Zare, F., et al., 2017. Integrated water assessment and modelling: a bibliometric analysis of trends in the water resource sector. Journal of Hydrology, 552, 765–778. doi:10.1016/j.jhydrol.2017.07.031.
  • Zealand, C.M., Burn, D.H., and Simonovic, S.P., 1999. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology, 214, 32–48. doi:10.1016/S0022-1694(98)00242-X.
  • Zhang, D., et al., 2018. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. Journal of Hydrology, 565, 720–736. doi:10.1016/j.jhydrol.2018.08.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.