58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of artificial rainfall produced by a portable rainfall simulator using a rotating dynamic rainfall gauge system

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1218-1227 | Received 12 Sep 2023, Accepted 22 May 2024, Published online: 02 Jul 2024

References

  • Almeida, W.S., et al., 2021. Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates. International Soil and Water Conservation Research, 9 (1), 69–75. doi:10.1016/j.iswcr.2020.10.004.
  • Alves Sobrinho, T., Gómez Macpherson, H., and Gómez, J.A., 2008. A portable integrated rainfall and overland flow simulator. Soil Use and Management, 24 (2), 163–170. doi:10.1111/j.1475-2743.2008.00150.x.
  • Brandt, J., 1988. The transformation of rainfall energy by a tropical rain forest canopy in relation to soil erosion. Journal of Biogeography, 15 (1), 41–48. doi:10.2307/2845044.
  • Brown, L.C. and Foster, G.R., 1987. Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30 (2), 379–386. doi:10.13031/2013.31957.
  • Camargo, A.D. and Sentelhas, P.C., 1997. Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, 5 (1), 89–97.
  • Carter, C.E., et al., 1974. Raindrop characteristic in South Central United States. Transactions of the ASAE, 17 (6), 1033–1037. doi:10.13031/2013.37021.
  • Carvalho, D.F.D., et al., 2022. Soil loss and runoff obtained with customized precipitation patterns simulated by InfiAsper. International Soil and Water Conservation Research, 10 (3), 407–413. doi:10.1016/j.iswcr.2021.12.003.
  • Cerdà, A., Ibáñez, S., and Calvo, A., 1997. Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technology, 11 (2), 163–170. doi:10.1016/S0933-3630(96)00135-3.
  • Christiansen, J.E., 1942. Irrigation by sprinkling. Agricultural Experiment Station Bulletin, 670, 1–47.
  • Colares, M.F.B., et al., 2016. Velocity of simulated raindrops in a wind tunnel measured by different technologies. In: Proceedings of 10th International Symposium on Agriculture and the Environment. West Lafayette, USA: Purdue University.
  • Costa, A.R.S., et al., 2023. Portable rainfall simulator: evaluation and suitability of plot geometry to improve rainfall uniformity. Engenharia Sanitária e Ambiental, 8, 1–8.
  • Coutinho, M.A. and Tomás, P.P., 1995. Characterization of raindrop size distributions at the vale formoso experimental erosion center. Catena, 25 (1–4), 187–197. doi:10.1016/0341-8162(95)00009-H.
  • Fawzy, H.E.D., Basha, A.M., and Botross, M.N., 2020. Estimating a mathematical formula of soil erosion under the effect of rainfall simulation by digital close range photogrammetry technique. Alexandria Engineering Journal, 59 (6), 5079–5097. doi:10.1016/j.aej.2020.09.039.
  • Ferreira, D.F., 2019. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37 (4), 529–535. doi:10.28951/rbb.v37i4.450.
  • Fister, W., et al., 2012. A portable wind and rainfall simulator for in situ soil erosion measurements. Catena, 91, 72–84. doi:10.1016/j.catena.2011.03.002
  • Green, D., 2014. Modelling Geomorphic Systems: scaled Physical Models, in Geomorphological Techniques. London: British Society for Geomorphology.
  • Green, D. and Pattison, I., 2022. Christiansen uniformity revisited: re-thinking uniformity assessment in rainfall simulator studies. Catena, 217, 106424. doi:10.1016/j.catena.2022.106424.
  • Gunn, R. and Kinzer, G.D., 1949. The terminal velocity of fall for water droplets in stagnant air. Journal of Atmospheric Sciences, 6 (4), 243–248.
  • Iserloh, T., et al., 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena, 110, 100–112. doi:10.1016/j.catena.2013.05.013.
  • Isidoro, J.M.G.P. and Lima, J.L.M.P., 2014. Laboratory simulation of the influence of building height and storm movement on the rainfall run-off process in impervious areas. Journal of Flood Risk Management, 7 (2), 176–181. doi:10.1111/jfr3.12030.
  • Isidoro, J.M.G.P., Lima, J.L.M.P., and Leandro, J.E., 2013. The study of rooftop connectivity on the rainfall-runoff process by means of a rainfall simulator and a physical model. Zeitschrift für Geomorphologie, 57 (1), 177–191. doi:10.1127/0372-8854/2012/S-00080.
  • Isidoro, J.M.G.P., Lima, J.L.M.P., and Leandro, J.E.T., 2012. Influence of wind-driven rain on the rainfall-runoff process for urban areas: scale model of high-rise buildings. Urban Water Journal, 9 (3), 199–210. doi:10.1080/1573062X.2012.654801.
  • Isidoro, J.M.G.P., Silveira, A., and Lima, B.O., 2022. Development of a large-scale rainfall simulator for urban hydrology research. Engenharia Sanitaria e Ambiental, 27 (1), 169–173. doi:10.1590/S1413-415220200365.
  • Jayawardena, A.W. and Rezaur, R.B., 2000. Drop size distribution and kinetic energy load of rainstorms in Hon Kong. Hydrological Processes, 14 (6), 1069–1082. doi:10.1002/(SICI)1099-1085(20000430)14:6<1069::AID-HYP997>3.0.CO;2-Q.
  • Johannsen, L.L., et al. 2020. Comparison of three types of laser optical disdrometers under natural rainfall conditions. Hydrological Sciences Journal, 65 (4), 524–535. doi:10.1080/02626667.2019.1709641.
  • Kavian, A., et al. 2018. Simulated raindrop’s characteristic measurements. A new approach of image processing tested under laboratory rainfall simulation. Catena, 167 (1), 190–197. doi:10.1016/j.catena.2018.04.034.
  • Kineell, P.I.A., 1980. Rainfall intensity-kinetic energy relationships for soil loss prediction. Soil Science Society of America Journal, 45 (1), 153–155. doi:10.2136/sssaj1981.03615995004500010033x.
  • Laws, J.O. and Parsons, D.A., 1943. The relation of raindrop size to intensity. Transactions American Geophysical Union, 24 (2), 452–460. doi:10.1029/TR024i002p00452.
  • Lima, L.A., 2010. Dynamic rain gage system for measurement of velocity and kinetic energy of rain drops. In: Workshop and Third Conference on Desertification and Land Degradation. Ghent-Belgium, 17.
  • Lora, M., Camporese, M., and Salandin, P.M., 2016. Design and performance of a nozzle-type rainfall simulator for landslide triggering experiments. Catena, 140, 77–89. doi:10.1016/j.catena.2016.01.018.
  • Macedo, P.M.S., et al., 2021. A modified portable rainfall simulator for soil erosion assessment under different rainfall patterns. Journal of Hydrology, 596, 126052. doi:10.1016/j.jhydrol.2021.126052.
  • Marques, V.S., et al., 2019. USLE K-Factor method selection for a Tropical Catchment. Sustainability, 11 (7), 1840. doi:10.3390/su11071840.
  • Marshall, J. and Palmer, W.M., 1948. The distribution of raindrops with size. Journal of Meteorology, 5 (4), 165–166. doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
  • McIsaac, G.F., 1990. Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy. Journal of Soil and Water Conservation, 45 (6), 663–666.
  • Mendes, T.A., et al., 2021. Development of a rainfall and runoff simulator for performing hydrological and geotechnical tests. Sustainability, 13 (6), 3060. doi:10.3390/su13063060.
  • Meyer, L.D., 1988. Rainfall simulators for soil conservation research. In: R. Lal, ed. Soil erosion research methods. Ankeny, IA: Soil and Water Conservation Society, 75–95.
  • Moraes, A.G.L., et al., 2019. Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in Southeast Brazil. Geoderma Regional, 20, e00242. doi:10.1016/j.geodrs.2019.e00242
  • Morin, J., Goldberg, D., and Seginer, I., 1967. A rainfall simulator with a rotating disk. Transactions of the ASAE, 10 (1), 74–77. doi:10.13031/2013.39599.
  • Ngasoh, F.G., et al., 2020. A revisit of rainfall simulator as a potential tool for Hydrological Research. Agrometeorology. doi:10.5772/intechopen.93532.
  • Pall, R., et al., 1983. Development and calibration of a rainfall simulator. Canadian Agricultural Engineering, 25 (2), 181–187.
  • Petrú, J. and Kalibová, J., 2018. Measurement and computation of kinetic energy of simulated rainfall in comparison with natural rainfall. Soil and Water Research, 13 (4), 226–233. doi:10.17221/218/2016-SWR.
  • Rosewell, C.J., 1986. Rainfall kinetic energy in Eastern Australia. Journal of Climate and Applied Meteorology, 25 (11), 1695–1701. https://www.jstor.org/stable/26183494.
  • Serio, M.A., Carollo, F.G., and Ferro, V. 2019. A method for evaluating rainfall kinetic power by a characteristic drop diameter. Journal of Hydrology, 577, 123996. doi:10.1016/j.jhydrol.2019.123996.
  • Sousa Júnior, S.F., Mendes, T.A., and Siqueira, E.Q., 2017. Development and calibration of a rainfall simulator for hydrological studies. Revista Brasileira de Recursos Hídricos, 22, e59. doi:10.1590/2318-0331.0217170015.
  • Spohr, R.B., et al., 2015. Desenvolvimento e validação de um simulador de chuvas portátil. Revista Brasileira de Recursos Hídricos, 20 (2), 411–417. doi:10.21168/rbrh.v20n2.p411-417.
  • Thomas, N.P. and El Swaify, S.A. 1989. Construction and calibration of a rainfall simulator. Journal of Agricultural Engineering Research, 4, 1–9. doi:10.1016/S0021-8634(89)80001-0.
  • Van Dijk, A.I.J.M., Bruijnzeel, L.A., and Rosewell, C.J., 2002. Rainfall intensity-kinetic energy relationships: a critical literature appraisal. Journal of Hydrology, 261 (1–4), 1–23. doi:10.1016/S0022-1694(02)00020-3.
  • Wacha, K.M., et al., 2021. Quantifying the time-specific kinetic energy of simulated rainfall using a dynamic rain gauge system. Agricultural & Environmental Letters, 6 (1), e20042. doi:10.1002/ael2.20042.
  • Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63 (11), 1309–1313. doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.
  • Zemke, J.J., 2017. Set-up calibration of a portable small scale rainfall simulator for assessing soil erosion processes at interrill scale. Cuadernos de Investigación Geográfica, 43 (1), 63–81. doi:10.18172/cig.3129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.