0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of spatial variability of precipitation in Krishna River Basin using a metric based on apportionment entropy

, &
Received 29 Nov 2023, Accepted 07 Jun 2024, Published online: 06 Aug 2024

References

  • Agarwal, A., et al., 2016. Hydrologic regionalization using wavelet-based multiscale entropy method. Journal of Hydrology (Amst), 538, 22–32. doi:10.1016/j.jhydrol.2016.03.023.
  • Allan, R.P. and Soden, B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1484. doi:10.1126/science.1160787.
  • Arnaud, P., et al., 2002. Influence of rainfall spatial variability on flood prediction. Journal of Hydrology (Amst), 260, 216–230. doi:10.1016/S0022-1694(01)00611-4.
  • Benestad, R.E., 2018. Implications of a decrease in the precipitation area for the past and the future. Environmental Research Letters, 13, 1–7. doi:10.1088/1748-9326/aab375.
  • Berg, P., Moseley, C., and Haerter, J.O., 2013. Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience, 6, 181–185. doi:10.1038/ngeo1731.
  • Briffa, K.R. and Jones, P.D., 1993. Global surface air temperature variations during the 20th century: part 2, implications for large-scale high-frequency palaeoclimatic studies. Holocene, 3, 77–88. doi:10.1177/095968369300300109.
  • Chang, W., et al., 2016. Changes in spatiotemporal precipitation patterns in changing climate conditions. Journal of Climate, 29, 8355–8376. doi:10.1175/JCLI-D-15-0844.s1.
  • Chen, L., et al., 2014. Copula entropy coupled with artificial neural network for rainfall-runoff simulation. Stochastic Environmental Research and Risk Assessment, 28 (7), 1755–1767.
  • Cheng, L., Niu, J., and Liao, D., 2017. Entropy-based investigation on the precipitation variability over the Hexi Corridor in China. Entropy, 19, 1–14. doi:10.3390/e19120660.
  • Ciach, G.J. and Krajewski, W.F., 2006. Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Advance in Water Resources, 29, 1450–1463. doi:10.1016/j.advwatres.2005.11.003.
  • Das, S., Kamruzzaman, M., and Islam, A.R.M.T., 2022. Assessment of characteristic changes of regional estimation of extreme rainfall under climate change: a case study in a tropical monsoon region with the climate projections from CMIP6 model. Journal of Hydrology (Amst), 610, 1–15. doi:10.1016/j.jhydrol.2022.128002.
  • Diakakis, M., Mavroulis, S., and Deligiannakis, G., 2012. Floods in Greece, a statistical and spatial approach. Natural Hazards, 62, 485–500. doi:10.1007/s11069-012-0090-z.
  • Donat, M.G., et al., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6, 508–513. doi:10.1038/nclimate2941.
  • Ebrahimi, N., Maasoumi, E., and Soofi, E.S., 1999. Ordering univariate distributions by entropy and variance. Journal of Econometrics, 90, 317–336. doi:10.1016/S0304-4076(98)00046-3.
  • Ghosh, S., et al., 2012. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Climate Change, 2, 86–91. doi:10.1038/nclimate1327.
  • Goswami, B.N., et al., 2006. Increasing trend of extreme rain events over india in a warming environment. Science, 314, 1442–1445. doi:10.1126/science.1132175. 1979.
  • Guntu, R.K., et al., 2020. Spatiotemporal variability of Indian rainfall using multiscale entropy. Journal of Hydrology (Amst), 587. doi:10.1016/j.jhydrol.2020.124916.
  • Hao, Z. and Singh, V.P., 2013. Entropy-based method for bivariate drought analysis. Journal of Hydrologic Engineering, 18, 780–786. doi:10.1061/(asce)he.1943-5584.0000621.
  • Hong, X., et al., 2015. Spatial and temporal analysis of drought using entropy-based standardized precipitation index: a case study in Poyang Lake basin, China. Theoretical and Applied Climatology, 122, 543–556. doi:10.1007/s00704-014-1312-y.
  • Jensen, N.E. and Pedersen, L., 2005. Spatial variability of rainfall: variations within a single radar pixel. Atmospheric Research, 77, 269–277. doi:10.1016/j.atmosres.2004.10.029.
  • Jones, P.D., Osborn, T.J., and Briffa, K.R., 1997. Estimating sampling errors in large-scale temperature averages. Jounal of Climate, 10, 2548–2568. https://doi.org/10.1175/1520-0442(1997)010%3C2548:ESEILS%3E2.0.CO;2.
  • Kawachi, T., Maruyama, T., and Singh, V.P., 2001. Rainfall entropy for delineation of water resources zones in Japan. Journal of Hydrology (Amst), 246, 36–44. doi:10.1016/S0022-1694(01)00355-9.
  • Krishna Basin Report, 2014. Ministry of water resource (Version 2.0). Government of India. Available from: https://indiawris.gov.in/downloads/Krishna%20Basin.pdf [ Accessed 10 Nov 2023].
  • Krishnan, R., et al., 2020. Assessment of climate change over the Indian region: a report of the ministry of earth sciences (MOES), government of India. Springer Nature, 226. doi:10.1007/978-981-15-4327-2.
  • Lestari, S., Syamsudin, F., and Widiyastuti, Y., 2021. Characteristics of rainfall over Jakarta and its surroundings observed by Global Precipitation Measurement (GPM)-IMERG data, in: 2021 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS). Institute of Electrical and Electronics Engineers Inc., 115–118. doi:10.1109/AGERS53903.2021.9617448.
  • Liu, Q., Yang, Z., and Cui, B., 2008. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. Journal of Hydrology (Amst), 361, 330–338. doi:10.1016/j.jhydrol.2008.08.002.
  • Lochbihler, K., Lenderink, G., and Siebesma, A.P., 2017. The spatial extent of rainfall events and its relation to precipitation scaling. Geophysical Research Letters, 44, 8629–8636. doi:10.1002/2017GL074857.
  • Martino, G., et al., 2013. Variability and trend in seasonal precipitation in the continental United States. Journal of Hydrologic Engineering, 18, 630–640. doi:10.1061/(asce)he.1943-5584.0000677.
  • Maruyama, T., Kawachi, T., and Singh, V.P., 2005. Entropy-based assessment and clustering of potential water resources availability. Journal of Hydrology (Amst), 309, 104–113. doi:10.1016/j.jhydrol.2004.11.020.
  • Matte, D., Christensen, J.H., and Ozturk, T., 2022. Spatial extent of precipitation events: when big is getting bigger. Climate Dynamics, 58, 1861–1875. doi:10.1007/s00382-021-05998-0.
  • Min, S.K., et al., 2011. Human contribution to more-intense precipitation extremes. Nature, 470, 378–381. doi:10.1038/nature09763.
  • Mishra, A.K., Özger, M., and Singh, V.P., 2009. An entropy-based investigation into the variability of precipitation. Journal of Hydrology (Amst), 370, 139–154. doi:10.1016/j.jhydrol.2009.03.006.
  • Moran, P.A., 1948. The interpretation of statistical maps. Journal of the Royal Statistical Society: Series B (Methodological), 10 (2), 243–251.
  • Niemczynowicz, J., 1988. Rainfall movement-a valuable complement to short-term rainfall data. Journal of Hydrology (Amst), 104, 311–326. doi:10.1016/0022-1694(88)90172-2.
  • O’Loughlin, G., Huber, W., and Chocat, B., 1996. Rainfall-runoff processes and modelling. Journal of Hydraulic Research, 34, 733–751. doi:10.1080/00221689609498447.
  • Pai, D., et al., 2014. Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over india and its comparison with existing data sets over the region. Mausam, 65 (1), 1–18.
  • Pechlivanidis, I.G., et al., 2016. Robust informational entropy-based descriptors of flow in catchment hydrology. Hydrological Sciences Journal, 61, 1–18. doi:10.1080/02626667.2014.983516.
  • Pedersen, L., et al., 2010. Quantification of the spatial variability of rainfall based on a dense network of rain gauges. Atmospheric Research, 95, 441–454. doi:10.1016/j.atmosres.2009.11.007.
  • Peleg, N., et al., 2021. Rainfall spatial-heterogeneity accelerates landscape evolution processes. Geomorphology. 390. 10.1016/j.geomorph.2021.107863.
  • Richman, M.B., 1986. Review article rotation of principal components. Jornal of Climatology, 6, 293–335. doi:10.1002/joc.3370060305.
  • Roushangar, K., Nourani, V., and Alizadeh, F., 2018. A multiscale time-space approach to analyze and categorize the precipitation fluctuation based on the wavelet transform and information theory concept. Hydrology Research, 49, 724–743. doi:10.2166/nh.2018.143.
  • Shannon, C.E., 1948. A mathematical theory of communication. The Bell System Technical Journal. doi:10.1002/j.1538-7305.1948.tb01338.x.
  • Sungmin, O. and Foelsche, U., 2019. Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network. Hydrology Earth System Science, 23, 2863–2875. doi:10.5194/hess-23-2863-2019.
  • Tamm, O., et al., 2023. The intensification of short-duration rainfall extremes due to climate change – need for a frequent update of intensity–duration–frequency curves. Climate Services, 30, 1–10. doi:10.1016/j.cliser.2023.100349.
  • Tan, X., Wu, X., and Liu, B., 2021. Global changes in the spatial extents of precipitation extremes. Environmental Research Letters, 16, 1–13. doi:10.1088/1748-9326/abf462.
  • Wasko, C., Sharma, A., and Westra, S., 2016. Reduced spatial extent of extreme storms at higher temperatures. Geophysical Research Letters, 43, 4026–4032. doi:10.1002/2016GL068509.
  • Wood, S.J., Jones, D.A., and Moore, R.J., 2000. Accuracy of rainfall measurement for scales of hydrological interest. Hydrology Earth System Science, 4, 531–543. doi:10.5194/hess-4-531-2000.
  • Xu, J., et al., 2020. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing. Water Reserch, 168, 1–11. doi:10.1016/j.watres.2019.115162.
  • Zhang, J. and Han, D., 2017. Assessment of rainfall spatial variability and its influence on runoff modelling: a case study in the Brue catchment, UK. Hydrology Processes, 31, 2972–2981. doi:10.1002/hyp.11250.
  • Zhang, Y. and Wang, K., 2023. Global precipitation system scale increased from 2001 to 2020. Journal of Hydrology (Amst), 616, 128768. doi:10.1016/j.jhydrol.2022.128768.
  • Zhuang, Q., Liu, S., and Zhou, Z., 2020. Spatial heterogeneity analysis of short-duration extreme rainfall events in megacities in China. Water (Switzerland), 12. doi:10.3390/w12123364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.