0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stable water isotopic composition and evaporation to inflow ratios for high-mountain tropical Ecuadorian lakes

, , ORCID Icon, ORCID Icon & ORCID Icon
Received 20 Oct 2023, Accepted 18 Jun 2024, Published online: 05 Aug 2024

References

  • Allison, G.B. and Leaney, F.W., 1982. Estimation of isotopic exchange parameters, using constant-feed pans. Journal of Hydrology, 55 (1), 151–161. doi:10.1016/0022-1694(82)90126-3.
  • Alsdorf, D., Lettenmaier, D., and Vörösmarty, C., 2003. The need for global, satellite-based observations of terrestrial surface waters. Eos, Transactions American Geophysical Union, 84 (29), 269–276. doi:10.1029/2003EO290001.
  • Alsdorf, D.E. and Lettenmaier, D.P., 2003. Tracking fresh water from space. Science, 301 (5639), 1491–1494. doi:10.1126/science.1089802.
  • Bandowe, B.A.M., et al., 2018. A 150-year record of polycyclic aromatic compound (PAC) deposition from high Andean Cajas National Park, southern Ecuador. Science of the Total Environment, 621, 1652–1663. doi:10.1016/j.scitotenv.2017.10.060.
  • Biggs, T.W., et al., 2015. Evaporative fractions and elevation effects on stable isotopes of high elevation lakes and streams in arid western Himalaya. Journal of Hydrology, 522, 239–249. doi:10.1016/j.jhydrol.2014.12.023.
  • Borja, P. and Cisneros, P., 2009. Estudio Edafológico. Informe del II año del proyecto “Elaboración de la línea base en hidrología de los páramos de Quimsacocha y su área de influencia”. Cuenca: PROMAS, Universidad de Cuenca.
  • Bowen, G.J. and Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39 (10). doi:10.1029/2003WR002086.
  • Craig, H., 1961. Isotopic variation in meteoric waters. Science, 133, 1702–1703. doi:10.1126/science.133.3465.1702
  • Craig, H. and Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: E. Tongiorgi, ed. Stable isotopes in oceanographic studies and paleotemperatures. Pisa, Italy: Ric. Lab. di Geol. Nucl., 9–130.
  • Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16 (4), 436–468. doi:10.1111/j.2153-3490.1964.tb00181.x.
  • Esquivel-Hernández, G., et al., 2018. Insight into the stable isotopic composition of glacial lakes in a tropical alpine ecosystem: chirripó, Costa Rica. Hydrological Processes, 32 (24), 3588–3603. doi:10.1002/hyp.13286.
  • Esquivel-Hernández, G., et al., 2022. Water stable isotopes reveal the hydrological response of Costa Rican glacial lakes to climate variability. Journal of South American Earth Sciences, 120, 104091. doi:10.1016/j.jsames.2022.104091.
  • Gat, J.R., 1981. Properties of the isotopic species of water: the “isotope effect”. In: J.R. GAT and R. Gonfiantini, eds. Stable isotope hydrology, deuterium and oxygen-18 in the water cycle. Vienna: IAEA, 7–19.
  • Gat, J.R. and Levy, Y., 1978. Isotope hydrology of inland sabkhas in the Bardawil area, Sinai. Limnology and Oceanography, 23 (5), 841–850. doi:10.4319/lo.1978.23.5.0841.
  • Gibson, J.J., Birks, S.J., and YI, Y., 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131, 316–328. doi:10.1016/j.quascirev.2015.04.013
  • Hungerbühler, D., et al., 2002. Neogene stratigraphy and Andean geodynamics of southern Ecuador. Earth-Science Reviews, 57 (1), 75–124. doi:10.1016/S0012-8252(01)00071-X.
  • Jasechko, S., GIBSON, J.J., and Edwards, T.W.D., 2014. Stable isotope mass balance of the Laurentian Great Lakes. Journal of Great Lakes Research, 40 (2), 336–346. doi:10.1016/j.jglr.2014.02.020.
  • Lyon, S.W., et al., 2022. On the potential of biochar soil amendments as a sustainable water management strategy. Sustainability, 14 (12), 7026. doi:10.3390/su14127026.
  • Lyon, S.W., Desilets, S.L.E., and Troch, P.A., 2009. A tale of two isotopes: differences in hydrograph separation for a runoff event when using δD versus δ18O. Hydrological Processes, 23 (14), 2095–2101. doi:10.1002/hyp.7326.
  • Magrin, G., et al., 2007. Latin America climate change 2007: impacts, adaptation and vulnerability. In: M.L. Parry, ed. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate Change. Cambridge, UK: Cambridge University Press, 581–615.
  • Mayr, C., et al., 2007. Precipitation origin and evaporation of lakes in semi-arid patagonia (Argentina) inferred from stable isotopes (d18O, d2H). Journal of Hydrology, 334, 53–63. doi:10.1016/j.jhydrol.2006.09.025
  • Michelutti, N., et al., 2022. Using Stable Water Isotope Composition (δ18O and δ2H) to track the interannual responses of arctic and tropical andean water bodies to rising air temperatures. Journal of Geophysical Research: Biogeosciences, 127 (4), e2021JG006719. doi:10.1029/2021JG006719.
  • Mosquera, P.V., et al., 2017. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador. Water Resources Research, 53 (8), 7269–7280. doi:10.1002/2017WR020902.
  • Neelin, J.D., et al., 2006. Tropical drying trends in global warming models and observations. Proceedings of the National Academy of Sciences, 103 (16), 6110–6115. doi:10.1073/pnas.0601798103.
  • Padrón, R.S., et al., 2015. Rainfall in the Andean Páramo: new insights from high-resolution monitoring in Southern Ecuador. Journal of Hydrometeorology, 16 (3), 985–996. doi:10.1175/JHM-D-14-0135.1.
  • Palomino-Ángel, S., et al., 2022. Retrieval of simultaneous water-level changes in Small Lakes With InSAR. Geophysical Research Letters, 49 (2), e2021GL095950. doi:10.1029/2021GL095950.
  • Pontes, P.R.M., et al., 2017. MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environmental Modelling and Software, 94, 1–20. doi:10.1016/j.envsoft.2017.03.029.
  • Råman Vinnå, L., et al., 2021. The vulnerability of lakes to climate change along an altitudinal gradient. Communications Earth & Environment, 2 (1), 35. doi:10.1038/s43247-021-00106-w.
  • Reyer, C.P.O., et al., 2017. Climate change impacts in Latin America and the Caribbean and their implications for development. Regional Environmental Change, 17 (6), 1601–1621. doi:10.1007/s10113-015-0854-6.
  • Sánchez-Murillo, R., et al., 2020. Tracing water sources and fluxes in a dynamic tropical environment: from observations to modeling. Frontiers in Earth Science, 8. doi:10.3389/feart.2020.571477.
  • Skrzypek, G., et al., 2015. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology, 523, 781–789. doi:10.1016/j.jhydrol.2015.02.010.
  • Terzer, S., et al., 2013. Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 17 (11), 4713–4728. doi:10.5194/hess-17-4713-2013.
  • Vázquez, R.F., Mosquera, P.V., and Hampel, H., 2024. Bathymetric modelling of high mountain tropical Lakes of Southern Ecuador. Water, 16 (8), 1142. doi:10.3390/w16081142.
  • Vystavna, Y., et al., 2021. Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nature Communications, 12 (1), 7224. doi:10.1038/s41467-021-27569-x.
  • Wang, W., et al., 2018. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nature Geoscience, 11 (6), 410–414. doi:10.1038/s41561-018-0114-8.
  • Welhan, J.A. and FRITZ, P., 1977. Evaporation pan isotopic behavior as an index of isotopic evaporation conditions. Geochimica et Cosmochimica Acta, 41 (5), 682–686. doi:10.1016/0016-7037(77)90306-4.
  • Woolway, R.I., et al., 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1 (8), 388–403. doi:10.1038/s43017-020-0067-5.
  • Yao, F., et al., 2018. Lake storage variation on the endorheic tibetan plateau and its attribution to climate change since the new millennium. Environmental Research Letters, 13 (6), 064011. doi:10.1088/1748-9326/aab5d3.