211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of hydrological responses using semi-distributed conceptual models in a mountainous catchment in the Hindu Kush Himalayan region

ORCID Icon & ORCID Icon
Pages 1371-1386 | Received 13 Dec 2023, Accepted 18 Jun 2024, Published online: 30 Jul 2024

References

  • Ali, A.F., et al., 2018. Projection of future streamflow of the Hunza River Basin, Karakoram Range (Pakistan) using HBV hydrological model. Journal of Mountain Science, 15 (10), 2218–2235. doi:10.1007/s11629-018-4907-4
  • Allen, R.G., et al., 1998. FAO irrigation and drainage paper no. 56. Rome Food and Agriculture Organization United Nations, 56 (97), e156.
  • Ávila, L., et al., 2022. Comparative evaluation of five hydrological models in a large-scale and tropical river basin. Water (Switzerland), 14 (19), 1–21. doi:10.3390/w14193013
  • Bastola, S., 2022. The regionalization of a parameter of HYMOD, a conceptual hydrological model, using data from across the globe. HydroResearch, 5, 13–21. doi:10.1016/J.HYDRES.2022.01.001
  • Bergström, S., 1976. Development and application of a conceptual runoff model for Scandinavian catchments.
  • Bergström, S., 1992. The HBV model – its structure and applications. Swedish Meteorology and Hydrology Institute, Norrköping, 4 (4), 1–33.
  • Boyle, D.P., Gupta, H.V., and Sorooshian, S., 2003. Multicriteria calibration of hydrologic models. Calibration of Watershed Models, 185–196. doi:10.1002/9781118665671.CH14
  • Chandel, V.S. and Ghosh, S., 2021. Components of Himalayan river flows in a changing climate. Water Resources Research. doi:10.1029/2020WR027589
  • Chiew, F.H.S., Peel, M., and Western, A.W., 2002. Application and testing of the simple rainfall-runoff model SIMHYD. In: V.P. Singh and D. Frevert, eds. Mathematical models of small watershed hydrology and applications. 1st ed. Water Resources Publications, LLC, 335–367. https://www.cabidigitallibrary.org/doi/full/10.5555/20033121352
  • Coz, M.L., et al., 2016. Impact of precipitation variability on the performance of a rainfall–runoff model in Mediterranean mountain catchments. Hydrological Sciences Journal, 61 (3), 507–518. doi:10.1080/02626667.2015.1051983
  • Dahri, Z.H., et al., 2016. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Science of the Total Environment, 548–549, 289–306. doi:10.1016/J.SCITOTENV.2016.01.001
  • Dahri, Z.H., et al., 2021. Spatio-temporal evaluation of gridded precipitation products for the high-altitude Indus basin. International Journal of Climatology, 41 (8), 4283–4306. doi:10.1002/joc.7073
  • Das, T., et al., 2008. Comparison of conceptual model performance using different representations of spatial variability. Journal of Hydrology, 356 (1–2), 106–118. doi:10.1016/j.jhydrol.2008.04.008
  • Dusa, S., et al., 2023. Does the performance enhancement through multi-model averaging at the catchment outlet gets translated to the interior ungauged points? Journal of Hydrology, 627, 130389. doi:10.1016/J.JHYDROL.2023.130389
  • Edijatno, O.N., et al., 1999. GR3J: a daily watershed model with three free parameters. Hydrological Sciences Journal, 44 (2), 263–277. doi:10.1080/02626669909492221
  • Evin, G., et al., 2014. Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resources Research, 50 (3), 2350–2375.
  • Fowler, H.J. and Archer, D.R., 2006. Conflicting signals of climatic change in the upper Indus Basin. Journal of Climate, 19 (17), 4276–4293. doi:10.1175/JCLI3860.1
  • Freudiger, D., et al., 2017. Snow redistribution for the hydrological modeling of alpine catchments. Wiley Interdisciplinary Reviews: Water, 4 (5), e1232.
  • Garee, K., et al., 2017. Hydrological modeling of the upper Indus basin: a case study from a high-altitude glacierized catchment Hunza. Water (Switzerland), 9 (1), 1–20. doi:10.3390/w9010017
  • Grover, S., et al., 2020. Modeling hydrological processes in ungauged snow-fed catchment of Western Himalaya. Water Resource, 47 (6), 987–995. doi:10.1134/S0097807820060147
  • Gupta, C., Kulkarni, A.V., and Taloor, A.K., 2021. Streamflow modeling and contribution of snow and glacier melt runoff in glacierized Upper Indus Basin. Environmental Monitoring and Assessment, 193 (11). doi:10.1007/s10661-021-09537-6
  • Hersbach, H., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. doi:10.1002/QJ.3803
  • Hirpa, F.A., et al., 2018. Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data. Journal of Hydrology, 566 (March), 595–606. doi:10.1016/j.jhydrol.2018.09.052
  • Immerzeel, W.W., et al., 2012. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110 (3–4), 721–736. doi:10.1007/s10584-011-0143-4
  • Immerzeel, W.W., et al., 2020. Importance and vulnerability of the world’s water towers. Nature, 577 (7790), 364–369. doi:10.1038/s41586-019-1822-y
  • Jeelani, G., et al., 2012. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate. Water Resources Research, 48 (12), 1–16. doi:10.1029/2011WR011590
  • Khan, A., et al., 2013. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. Journal of Hydrology, 509, 442–453. doi:10.1016/j.jhydrol.2013.11.028
  • Krysanova, V., et al., 2017. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide – a synthesis. Environmental Research Letters, 12 (10). doi:10.1088/1748-9326/aa8359
  • Lavenne, A.D., et al., 2016. Spatial variability of the parameters of a semi-distributed hydrological model. IAHS-AISH Proceedings Reports, 373 (2011), 87–94. doi:10.5194/piahs-373-87-2016
  • Li, B., et al., 2013. Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China. Journal of Geographical Sciences, 23 (1), 17–30. doi:10.1007/S11442-013-0990-1/METRICS
  • Li, F., et al., 2014. Runoff predictions in ungauged catchments in southeast Tibetan Plateau. Journal of Hydrology, 511, 28–38. doi:10.1016/j.jhydrol.2014.01.014
  • Li, H., et al., 2015. Integrating a glacier retreat model into a hydrological model – case studies of three glacierised catchments in Norway and Himalayan region. Journal of Hydrology, 527, 656–667. doi:10.1016/j.jhydrol.2015.05.017
  • Lindström, G., et al., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201 (1–4), 272–288. doi:10.1016/S0022-1694(97)00041-3
  • Liu, H., et al., 2023a. Energy-balance modeling of heterogeneous glacio-hydrological regimes at upper Indus. Journal of Hydrology: Regional Studies, 49, 101515. doi:10.1016/J.EJRH.2023.101515
  • Liu, S., et al., 2023b. Modeling the impact of climate change on streamflow in glacier/snow-fed northern Tianshan basin. Journal of Hydrology: Regional Studies, 50, 101552. doi:10.1016/j.ejrh.2023.101552
  • Lutz, A.F., et al., 2014. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4 (7), 587–592. doi:10.1038/nclimate2237
  • Malla, M.K. and Arya, D.S., 2023. Event-based extreme precipitation variability analysis over a part of The Hindu Kush Himalayan region. International Journal of Climatology, April, 4196–4219. doi:10.1002/joc.8082
  • Manikanta, V. and Umamahesh, N.V., 2023. Performance assessment of methods to estimate initial hydrologic conditions for event-based rainfall-runoff modelling. Journal of Water and Climate Change, 14 (7), 2277–2293. doi:10.2166/wcc.2023.043
  • Md Haque, M., et al., 2015. Estimation of catchment yield and associated uncertainties due to climate change in a mountainous catchment in Australia. Hydrological Processes, 29 (19), 4339–4349. doi:10.1002/hyp.10492
  • Mimeau, L., et al., 2019. Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): some cryospheric-related issues. Hydrology and Earth System Sciences, 23 (9), 3969–3996. doi:10.5194/HESS-23-3969-2019
  • Mishra, S.K., et al., 2021. Grand challenges of hydrologic modeling for food-energy-water nexus security in high mountain Asia. Frontiers in Water, 3, 728156. doi:10.3389/FRWA.2021.728156/BIBTEX
  • Mölg, T. and Kaser, G., 2011. A new approach to resolving climate‐cryosphere relations: downscaling climate dynamics to glacier‐scale mass and energy balance without statistical scale linking. Journal of Geophysical Research: Atmospheres, 116 (D16).
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Mukhopadhyay, B. and Khan, A., 2014. A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 509, 549–572. doi:10.1016/j.jhydrol.2013.11.059
  • Mukhopadhyay, B. and Khan, A., 2015. A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 527, 119–132. doi:10.1016/j.jhydrol.2015.04.045
  • Nepal, S., 2016. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. Journal of Hydro-environment Research, 10, 76–89. doi:10.1016/J.JHER.2015.12.001
  • Nepal, S., et al., 2020. Application of the J2000 Hydrological model in the Panjshir catchment of The Hindu Kush Himalayan region. 1–37.
  • Nury, A.H., et al., 2022. A conceptual model for simulating streamflow in a changing snow-covered catchment: application to the data-sparse upper Brahmaputra River basin. Hydrological Sciences Journal, 67 (11), 1669–1682. doi:10.1080/02626667.2022.2083512
  • Parajka, J., Merz, R., and Blöschl, G., 2007. Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrological Process, 21 (4), 435–446. doi:10.1002/HYP.6253
  • Pellicciotti, F., et al., 2012. Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: suggestions for calibration strategies. Mountain Research and Development, 32 (1), 39–50.
  • Perrin, C., Michel, C., and Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279 (1–4), 275–289. doi:10.1016/S0022-1694(03)00225-7
  • Ragettli, S., et al., 2015. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. doi:10.1016/j.advwatres.2015.01.013
  • Rahman, K.U., et al., 2022. Comparison of machine learning and process-based SWAT model in simulating streamflow in the Upper Indus Basin. Applied Water Science, 12 (8), 1–19. doi:10.1007/s13201-022-01692-6
  • Rai, S.P., et al., 2019. Identifying contribution of snowmelt and glacier melt to the Bhagirathi River (Upper Ganga) near snout of the Gangotri Glacier using environmental isotopes. CATENA, 173, 339–351. doi:10.1016/J.CATENA.2018.10.031
  • Raju, K.S. and Kumar, D.N., 2018. Impact of climate change on water resources with modeling techniques and case studies. Springer Climate. 29. doi:10.1007/978-981-10-6110-3
  • Renard, B., et al., 2010. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resources Research, 46 (5), 5521. doi:10.1029/2009WR008328
  • RGI Consortium, 2017. Randolph Glacier inventory (RGI) - a dataset of global glacier outlines. Version 6.0. Technology Report, Global L. Ice Meas. from Space. doi:10.7265/N5-RGI-60
  • Roy, A. and Kasiviswanathan, K.S., 2023. Exploring the potential of data-driven models for streamflow simulation in Himalayan region. Developments in Environmental Science, 14, 193–215. doi:10.1016/B978-0-443-18640-0.00010-9
  • Rudraswamy, G.K., Manikanta, V., and Umamahesh, N., 2023. Hydrological assessment of the Tungabhadra River Basin based on CMIP6 GCMs and multiple hydrological models. Journal of Water and Climate Change, 14 (5), 1371–1394. doi:10.2166/wcc.2023.272
  • Sezen, C., et al., 2019. Hydrological modelling of karst catchment using lumped conceptual and data mining models. Journal of Hydrology, 576 (April), 98–110. doi:10.1016/j.jhydrol.2019.06.036
  • Shah, M.I., et al., 2020. Predicting hydrologic responses to climate changes in highly glacierized and mountainous region Upper Indus Basin. Royal Society Open Science, 7 (8). doi:10.1098/rsos.191957
  • Sheng, S., et al., 2020. Transferability of a conceptual hydrological model across different temporal scales and Basin sizes. Water Resources Management, 34 (9), 2953–2968. doi:10.1007/s11269-020-02594-5
  • Singh, V., Jain, S.K., and Nagale, D.S., 2023. A comparative analysis of glacier and glacier-melt runoff changes in western and eastern Himalayan river basins. Cold Regions Science and Technology, 214, 103965. doi:10.1016/J.COLDREGIONS.2023.103965
  • Soncini, A., et al., 2015. Future hydrological regimes in the upper Indus basin: a case study from a high-altitude glacierized catchment. Journal of Hydrometeorology, 16 (1), 306–326. doi:10.1175/JHM-D-14-0043.1
  • Soncini, A., et al., 2016. Future hydrological regimes and glacier cover in the Everest region: the case study of the upper Dudh Koshi basin. Science of the Total Environment, 565, 1084–1101. doi:10.1016/J.SCITOTENV.2016.05.138
  • Su, F., et al., 2016. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change, 136, 82–95. doi:10.1016/j.gloplacha.2015.10.012
  • Sun, W., Ishidaira, H., and Bastola, S., 2012. Calibration of hydrological models in ungauged basins based on satellite radar altimetry observations of river water level. Hydrological Processes, 26 (23), 3524–3537. doi:10.1002/HYP.8429
  • Tegegne, G., Park, D.K., and Kim, Y.O., 2017. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14 (November), 49–66. doi:10.1016/j.ejrh.2017.10.002
  • Tellman, B., et al., 2021. Satellite imaging reveals increased proportion of population exposed to floods. Nature, 596 (7870), 80–86. doi:10.1038/s41586-021-03695-w
  • Tian, F., et al., 2019a. Searching for an optimized single-objective function matching multiple objectives with automatic calibration of hydrological models. Chinese Geographical Science, 29 (6), 934–948. doi:10.1007/s11769-019-1068-5
  • Tian, Y., et al., 2019b. A prior estimation of the spatial distribution parameter of soil moisture storage capacity using satellite-based root-zone soil moisture data. Remote Sensing, 11 (21). doi:10.3390/rs11212580
  • Tibangayuka, N., Mulungu, D.M.M., and Izdori, F., 2022. Evaluating the performance of HBV, HEC-HMS and ANN models in simulating streamflow for a data scarce high-humid tropical catchment in Tanzania. Hydrological Sciences Journal, 67 (14), 2191–2204. doi:10.1080/02626667.2022.2137417
  • Tiel, M.V., et al., 2020. Glacio-hydrological model calibration and evaluation. Wiley Interdisciplinary Reviews Water, 7 (6), e1483. doi:10.1002/WAT2.1483
  • Tran, Q.Q., Niel, J.D., and Willems, P., 2018. Spatially distributed conceptual hydrological model building: a generic top-down approach starting from lumped models. Water Resources Research, 54 (10), 8064–8085. doi:10.1029/2018WR023566
  • Troin, M., et al., 2022. Large-sample study of uncertainty of hydrological model components over North America. Journal of Hydrology, 609, 127766. doi:10.1016/J.JHYDROL.2022.127766
  • Ul Hasson, S., Böhner, J., and Lucarini, V., 2017. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin. Earth System Dynamics, 8 (2), 337–355. doi:10.5194/esd-8-337-2017
  • Vidyarthi, V.K. and Jain, A., 2023. Development of simple semi-distributed approaches for modelling complex rainfall–runoff process. Hydrological Sciences Journal, 68 (7), 998–1015. doi:10.1080/02626667.2023.2197117
  • Wagener, T., Howard, S.W., and Hoshin, V.G., 2004. Runoff modelling in gauged and ungauged catchments. doi:10.1142/p335
  • Wang, X., et al., 2019. Understanding the discharge regime of a glacierized alpine catchment in the Tianshan Mountains using an improved HBV-D hydrological model. Global and Planetary Change, 172 (March 2018), 211–222. doi:10.1016/j.gloplacha.2018.09.017
  • Wester, P., et al., 2019. The Hindu Kush Himalaya assessment: mountains,climate change, sustainability and people. Hindu Kush Himalaya Assess. doi:10.1007/978-3-319-92288-1_5
  • Wood, L.R., et al., 2020. Melting Himalayan glaciers threaten domestic water resources in the mount Everest region, Nepal. Frontiers in Earth Science, 8, 526525. doi:10.3389/FEART.2020.00128/BIBTEX
  • Wortmann, M., et al., 2019. An efficient representation of glacier dynamics in a semi-distributed hydrological model to bridge glacier and river catchment scales. Journal of Hydrology, 573, 136–152. doi:10.1016/J.JHYDROL.2019.03.006
  • Wu, J., et al., 2021. Variation of runoff and runoff components of the Upper Shule River in the Northeastern Qinghai–Tibet Plateau under climate change. Water, 13 (23), 3357. doi:10.3390/W13233357
  • Yilmaz, K.K., Gupta, H.V., and Wagener, T., 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research, 44 (9), 9417. doi:10.1029/2007WR006716
  • Yu, B. and Zhu, Z., 2015. Comparaison des modèles AWBM et SimHyd pour des bassins versants boisés. Hydrological Sciences Journal, 60 (7–8), 1200–1212. doi:10.1080/02626667.2014.961924
  • Zhou, L., et al., 2022. Diagnosing structural deficiencies of a hydrological model by time-varying parameters. Journal of Hydrology, 605 (November 2021), 127305. doi:10.1016/j.jhydrol.2021.127305
  • Zhou, S., et al., 2021. Quantifying the uncertainty interaction between the model input and structure on hydrological processes. Water Resources Management, 35 (12), 3915–3935. doi:10.1007/s11269-021-02883-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.