0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving the empirical sediment yield index and identifying the spatiotemporal heterogeneity of its driving factors

, &
Received 02 Mar 2024, Accepted 02 Jul 2024, Accepted author version posted online: 30 Jul 2024
Accepted author version

References

  • Abbaspour, K.C. et al. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027.
  • Baartman, J.E.M. et al. 2022. The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study. Land, 11(6). doi:10.3390/land11060943.
  • Baartman, J.E.M. et al. 2018. The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surface Processes and Landforms, 43(10), 2121-2135. doi:10.1002/esp.4377.
  • Bai, X. et al. 2020. Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective. Water Resources Management, 34(13), 3987-4002. doi:10.1007/s11269-020-02626-0.
  • Borrelli, P. et al. 2021. Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 780. doi:10.1016/j.scitotenv.2021.146494.
  • Borrelli, P. et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 2013. doi:10.1038/s41467-017-02142-7.
  • Cao, Y.F. et al. 2024. Decoupling the effects of air temperature change on soil erosion in Northeast China. Journal of Environmental Management 351. doi:10.1016/j.jenvman.2023.119626.
  • Cerretelli, S. et al. 2023. A scenario modelling approach to assess management impacts on soil erosion in coffee systems in Central America. Catena, 228. doi:10.1016/j.catena.2023.107182.
  • Chaplot, V. 2005. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology, 312(1-4), 207-222. doi:10.1016/j.jhydrol.2005.02.017.
  • Chaplot, V. 2014. Impact of spatial input data resolution on hydrological and erosion modeling: Recommendations from a global assessment. Physics and Chemistry of the Earth, 67-69, 23-35. doi:10.1016/j.pce.2013.09.020.
  • Chen, M.J. et al. 2023a. Comparing critical source areas for the sediment and nutrients of calibrated and uncalibrated models in a plateau watershed in southwest China. Journal of Environmental Management 326. doi:10.1016/j.jenvman.2022.116712.
  • Chen, P. et al. 2023b. Tendency of soil erosion dynamics by coupling radioisotopes and RUSLE model on the Southeastern Tibetan Plateau in response to climate warming and human activity. Catena, 223. doi:10.1016/j.catena.2023.106954.
  • Chen, S. et al. 2022a. Comprehensive assessment of water environmental carrying capacity for sustainable watershed development. Journal of Environmental Management 303, 114065. doi:10.1016/j.jenvman.2021.114065.
  • Chen, T. et al. 2022b. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. Catena, 212. doi:10.1016/j.catena.2022.106060.
  • Daniel, H. 2023. Modeling surface water potential using the SWAT model combined with principal component analysis in the ungauged Gelana watershed, Ethiopia. Journal of Water and Climate Change. doi:10.2166/wcc.2023.548.
  • Delmas, M. et al. 2009. A method for developing a large-scale sediment yield index for European river basins. Journal of Soils and Sediments, 9(6), 613-626. doi:10.1007/s11368-009-0126-5.
  • dos Santos, F.M. et al. 2023. Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Gua?u River basin in Sao Paulo State, Brazil. Catena, 222. doi:10.1016/j.catena.2022.106872.
  • Dubey, S.K. et al. 2023. Hydroclimatic Impact Assessment Using the SWAT Model in India-State of the Art Review. Sustainability, 15(22). doi:10.3390/su152215779.
  • Eekhout, J.P.C. and de Vente, J. 2022. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Science Reviews, 226. doi:10.1016/j.earscirev.2022.103921.
  • El Ghoul, I. et al. 2023. Impact of land use land cover changes on flow uncertainty in Siliana watershed of northwestern Tunisia. Catena, 220. doi:10.1016/j.catena.2022.106733.
  • El Kateb, H. et al. 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena, 105, 1-10. doi:10.1016/j.catena.2012.12.012.
  • Feng, Z.H. et al. 2023. Analysis of water quality indexes and their relationships with vegetation using self-organizing map and geographically and temporally weighted regression. Environmental Research, 216. doi:10.1016/j.envres.2022.114587.
  • Fotheringham, A.S. and Charlton, M.E. 1998. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environment and Planning A, 30(11).
  • Fotheringham, A.S. et al. 2015. Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47(4), 431-452.
  • Gajbhiye, S. et al. 2015. Simplified sediment yield index model incorporating parameter curve number. Arabian Journal of Geosciences, 8(4), 1993-2004. doi:10.1007/s12517-014-1319-9.
  • Gao, J. et al. 2021. Contribution analysis on spatial tradeoff/synergy of Karst soil conservation and water retention for various geomorphological types: Geographical detector application. Ecological Indicators, 125. doi:10.1016/j.ecolind.2021.107470.
  • Ge, R.F. et al. 2020. Water erosion in the middle reaches of the Brahmaputra in Tibet: Characteristics and driving factors in the recent 30 years. Global Ecology and Conservation, 24. doi:10.1016/j.gecco.2020.e01343.
  • Gholami, V. et al. 2021. Soil erosion modeling using erosion pins and artificial neural networks. Catena, 196. doi:10.1016/j.catena.2020.104902.
  • He, Y. et al. 2018. Water allocation under the constraint of total water-use quota: a case from Dongjiang River Basin, South China. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 63(1), 154-167. doi:10.1080/02626667.2017.1417596.
  • He, Z. et al. 2021. A least squares method for identification of unknown groundwater pollution source. Hydrology Research, 52(2), 450-460. doi:10.2166/nh.2021.088.
  • Huang, B. et al. 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383-401. doi:10.1080/13658810802672469.
  • Istanbuly, M.N. et al. 2022. How Socio-Economic Drivers Explain Landscape Soil Erosion Regulation Services in Polish Catchments. International Journal of Environmental Research and Public Health, 19(4). doi:10.3390/ijerph19042372.
  • Jha, M. et al. 2004. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions. Journal of the American Water Resources Association, 40(3), 811-825. doi:10.1111/j.1752-1688.2004.tb04460.x.
  • Jiang, J. et al. 2023. Climate and landuse change enhance spatio-temporal variability of Dongjiang river flow and ammonia nitrogen. Science of the Total Environment, 867. doi:10.1016/j.scitotenv.2023.161483.
  • Karimi, A. and Ghajari, Y.E. 2022. Improving land surface temperature prediction using spatiotemporal factors through a genetic-based selection procedure (Case Study: Tehran, Iran). Advances in Space Research, 69(9), 3258-3267. doi:10.1016/j.asr.2022.02.004.
  • Ke, Q.H. and Zhang, K.L. 2022. Interaction effects of rainfall and soil factors on runoff, erosion, and their predictions in different geographic regions. Journal of Hydrology, 605. doi:10.1016/j.jhydrol.2021.127291.
  • Kim, J. et al. 2012. Impacts of GIS data quality on determination of runoff and suspended sediments in the Imha watershed in Korea. Geosciences Journal, 16(2), 181-192. doi:10.1007/s12303-012-0013-8.
  • Krebs, P. et al. 2012. Modelling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. Journal of Historical Geography, 38(4), 372-386. doi:10.1016/j.jhg.2012.01.018.
  • Lai, C.G. et al. 2016a. Spatio-temporal variation in rainfall erosivity during 1960-2012 in the Pearl River Basin, China. Catena, 137, 382-391. doi:10.1016/j.catena.2015.10.008.
  • Lai, C.G. et al. 2016b. A procedure for assessing the impacts of land-cover change on soil erosion at basin scale. Hydrology Research, 47(5), 903-918. doi:10.2166/nh.2015.094.
  • Liu, Y. et al. 2019. Evaluating efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using integrated SWAT and cost evaluation tool. Journal of Hydrology, 577. doi:10.1016/j.jhydrol.2019.123965.
  • Lv, L. et al. 2014. Runoff simulation of Dongjiang River Basin based on the soil and water assessment tool (in chinese). Journal of Natural Resources, 29(10), 1746-1757. doi:10.11849/zrzyxb.2014.10.010.
  • Ma, B. et al. 2012. Effect of Soybean Plants on Runoff Erosion Sediment on Slope Land. Journal of Soil and Water Conservation.
  • Ma, Y. et al. 2023. Effects of rainfall pattern and soil surface roughness on surface-subsurface hydrological response and particle size distribution of red soil slope. Catena, 232. doi:10.1016/j.catena.2023.107422.
  • Maurya, S. et al. 2021. Soil erosion in future scenario using CMIP5 models and earth observation datasets. Journal of Hydrology, 594. doi:10.1016/j.jhydrol.2020.125851.
  • Meshram, S.G. et al. 2022. Morphometric deterministic model for prediction of sediment yield index for selected watersheds in upper Narmada Basin. Applied Water Science, 12(7). doi:10.1007/s13201-022-01644-0.
  • Meshram, S.G. et al. 2018. Comparison of cubic, quadratic, and quintic splines for soil erosion modeling. Applied Water Science, 8(6). doi:10.1007/s13201-018-0807-6.
  • Meshram, S.G. et al. 2017. Modelling soil erosion from a watershed using cubic splines. Arabian Journal of Geosciences, 10(6). doi:10.1007/s12517-017-2908-1.
  • Mianabadi, H. et al. 2021. Quantitative evaluation of ‘No-harm’ rule in international transboundary water law in the Helmand River basin. Journal of Hydrology, 599. doi:10.1016/j.jhydrol.2021.126368.
  • Moriasi, D.N. et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the Asabe, 50(3), 885-900. doi:10.13031/2013.23153.
  • Nadal-Romero, E. and Regues, D. 2010. Geomorphological dynamics of subhumid mountain badland areas - weathering, hydrological and suspended sediment transport processes: A case study in the Araguas catchment (Central Pyrenees) and implications for altered hydroclimatic regimes. Progress in Physical Geography-Earth and Environment, 34(2), 123-150. doi:10.1177/0309133309356624.
  • Negewo, T.F. and Sarma, A.K. 2021. Spatial and temporal variability evaluation of sediment yield and sub-basins/hydrologic response units prioritization on Genale Basin, Ethiopia. Journal of Hydrology, 603. doi:10.1016/j.jhydrol.2021.127190.
  • Nkwasa, A. et al. 2022a. Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT. Hydrology and Earth System Sciences, 26(1), 71-89. doi:10.5194/hess-26-71-2022.
  • Nkwasa, A. et al. 2022b. Regionalization of the SWAT+ model for projecting climate change impacts on sediment yield: An application in the Nile basin. Journal of Hydrology-Regional Studies, 42. doi:10.1016/j.ejrh.2022.101152.
  • Ou, C.H. et al. 2022. Multiple driving factors and hierarchical management of PM2.5: Evidence from Chinese central urban agglomerations using machine learning model and GTWR. Urban Climate, 46. doi:10.1016/j.uclim.2022.101327.
  • Parhizkar, M. et al. 2021. Hydromulch roots reduce rill detachment capacity by overland flow in deforested hillslopes. Journal of Hydrology, 598. doi:10.1016/j.jhydrol.2021.126272.
  • Ran, Q. et al. 2020. Impacts of terracing on hydrological processes: A case study from the Loess Plateau of China. Journal of Hydrology, 588. doi:10.1016/j.jhydrol.2020.125045.
  • Rawat, K.S. et al. 2014. Sediment Yield Index mapping and prioritization of Madia subwatershed, Sagar District of Madhya Pradesh (India). Arabian Journal of Geosciences, 7(8), 3131-3145. doi:10.1007/s12517-013-1007-1.
  • Rodrigo-Comino, J. et al. 2017. Role of rock fragment cover on runoff generation and sediment yield in tilled vineyards. European Journal of Soil Science, 68(6), 864-872. doi:10.1111/ejss.12483.
  • Sam, T.T. and Khoi, D.N. 2022. The responses of river discharge and sediment load to historical land-use/land-cover change in the Mekong River Basin. Environmental Monitoring and Assessment, 194(10). doi:10.1007/s10661-022-10400-5.
  • Sanyal, J. et al. 2021. Examining the downstream geomorphic impact of a large dam under climate change. Catena, 196. doi:10.1016/j.catena.2020.104850.
  • Shao, F.F. et al. 2022. Efficacy of earthworm casts on sediment and nitrate loss with runoff in the Chinese Loess Plateau. Soil & Tillage Research, 219. doi:10.1016/j.still.2022.105328.
  • Shen, N. et al. 2021. Soil detachment capacity by rill flow for five typical loess soils on the Loess Plateau of China. Soil & Tillage Research, 213. doi:10.1016/j.still.2021.105159.
  • Shrestha, N.K. and Wang, J.Y. 2018. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate. Science of the Total Environment, 625, 1030-1045. doi:10.1016/j.scitotenv.2017.12.347.
  • Shrestha, S. et al. 2022. Integrated assessment of the landuse change and climate change impacts on the sediment yield in the Songkhram River Basin, Thailand. Catena, 209. doi:10.1016/j.catena.2021.105859.
  • Song, S.H. et al. 2022. Spatial-temporal variation of soil erosion in Dongjiang source area based on RUSLE model. Journal of Earth Environment, 13(03), 344-353. doi:10.7515/JEE222008.
  • Sooryamol, K.R. et al. 2022. Modelling climate change impact on soil erosion in a watershed of north-western Lesser Himalayan region. Journal of Sedimentary Environments, 7(2), 125-146. doi:10.1007/s43217-022-00089-4.
  • Sun, W. et al. 2014. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121, 151-163. doi:10.1016/j.catena.2014.05.009.
  • Teklay, A. et al. 2019. Evaluation of static and dynamic land use data for watershed hydrologic process simulation: A case study in Gummara watershed, Ethiopia. Catena, 172, 65-75. doi:10.1016/j.catena.2018.08.013.
  • Tian, P. et al. 2020. Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin. Catena, 187. doi:10.1016/j.catena.2019.104340.
  • Tian, P. et al. 2023. Response of soil erosion to vegetation restoration and terracing on the Loess Plateau. Catena, 227. doi:10.1016/j.catena.2023.107103.
  • Verstraeten, G. 2006. Regional scale modelling of hillslope sediment delivery with SRTM elevation data. Geomorphology, 81(1-2), 128-140. doi:10.1016/j.geomorph.2006.04.005.
  • Wang, N. et al. 2019a. Spatial Variabilities of Runoff Erosion and Different Underlying Surfaces in the Xihe River Basin. Water, 11(2). doi:10.3390/w11020352.
  • Wang, N. et al. 2019b. Spatial Variabilities of Runoff Erosion and Different Underlying Surfaces in the Xihe River Basin. Water, 11(2). doi:10.3390/w11020352.
  • Wang, Q. et al. 2018. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. Catena, 170, 305-315. doi:10.1016/j.catena.2018.06.022.
  • Wang, S. et al. 2021. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resources Conservation and Recycling 168. doi:10.1016/j.resconrec.2021.105477.
  • Wei, Q. et al. 2019. Global and Geographically and Temporally Weighted Regression Models for Modeling PM2.5 in Heilongjiang, China from 2015 to 2018. International Journal of Environmental Research and Public Health, 16(24). doi:10.3390/ijerph16245107.
  • Wichert, M.C.P. et al. 2018. Site preparation, initial growth and soil erosion in Eucalyptus grandis plantations on steep terrain. Scientia Forestalis, 46(117), 17-30. doi:10.18671/scifor.v46n117.02.
  • Williams, J.R. and Berndt, H.D. 1977. Sediment Yield Prediction Based on Watershed Hydrology. Transactions of the ASAE, 20(6).
  • Xia, L. et al. 2021. Dynamic changes in soil erosion risk and its driving mechanism: A case study in the Loess Plateau of China. European Journal of Soil Science, 72(3), 1312-1331. doi:10.1111/ejss.13067.
  • Xiao, J. et al. 2021. A dual-randomness bi-level interval multi-objective programming model for regional water resources management. Journal of Contaminant Hydrology, 241. doi:10.1016/j.jconhyd.2021.103816.
  • Yan, P. et al. 2021. Assessment of Influencing Factors on the Spatial Variability of SOM in the Red Beds of the Nanxiong Basin of China, Using GIS and Geo-Statistical Methods. Isprs International Journal of Geo-Information, 10(6). doi:10.3390/ijgi10060366.
  • Yuan, L.F. et al. 2022. Modeling surface runoff and soil loss response to climate change under GCM ensembles and multiple cropping and tillage systems in Oklahoma. Soil & Tillage Research, 218. doi:10.1016/j.still.2021.105296.
  • Zhai, Y.Y. and Fang, H.Y. 2023. Spatiotemporal variations of freeze-thaw erosion risk during 1991-2020 in the black soil region, northeastern China. Ecological Indicators, 148. doi:10.1016/j.ecolind.2023.110149.
  • Zhang, Z. et al. 2021. The effects of landscape pattern evolution on runoff and sediment based on SWAT model. Environmental Earth Sciences, 80(1). doi:10.1007/s12665-020-09315-6.
  • Zhao, M.L. et al. 2023. Quantifying impact of climatic and anthropogenic factors on runoff in the source region of Alpine River in northeast Qinghai-Tibetan Plateau. Journal of Hydrology-Regional Studies, 47. doi:10.1016/j.ejrh.2023.101423.
  • Zhou, F. et al. 2013. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology, 485, 113-125. doi:10.1016/j.jhydrol.2012.12.040.
  • Zhou, Z. et al. 2021. Spatio-Temporal Effects of Multi-Dimensional Urbanization on Carbon Emission Efficiency: Analysis Based on Panel Data of 283 Cities in China. International Journal of Environmental Research and Public Health, 18(23). doi:10.3390/ijerph182312712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.