0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of the time of concentration of small watersheds located in northeastern North America

ORCID Icon, &
Received 30 Nov 2023, Accepted 08 Jul 2024, Accepted author version posted online: 05 Aug 2024
Accepted author version

References

  • Acreman, M. and Holden, J. 2013. How wetlands affect floods. Wetlands, 33 (5), 773-786. doi: 10.1007/s13157-013-0473-2
  • Ahlén, I. et al. 2022. Wetland position in the landscape: Impact on water storage and flood buffering. Ecohydrology, 15 (7), e2458. doi: 10.1002/eco.2458
  • Bay, R.G. 1969. Runoff from small peatland watersheds. Journal of Hydrology, 9 (1), 90-102. doi: 10.1016/0022-1694(69)90016-X
  • Bell, F.C. and Karr, S.O. 1969. Characteristic response times in design flood estimation. Journal of Hydrology, 8 (2), 173–196. doi:10.1016/0022-1694(69)90120-6
  • Beven, K.J. 2020. A history of the concept of time of concentration. Hydrology and Earth System Sciences, 24 (5), 2655–2670. doi: 10.5194/hess-24-2655-2020
  • Branfireun, B.A. and Roulet, N.T. 1998. The baseflow and storm flow hydrology of a precambrian shield headwater peatland. Hydrological Processes, 12 (1), 57-72. doi: 10.1002/(SICI)1099-1085(199801)12:13.0.CO;2-U
  • Breiman, L. et al. 1984. Classification and Regression Trees. Chapman & Hall, Boca Raton, FL, 368 p.
  • Dhakal, N. et al. 2013. Rate-based estimation of the runoff coefficients for selected watersheds in Texas. Journal of Hydrologic Engineering, 18 (12), 1571-1580. doi: 10.1061/(ASCE)HE.1943-5584.0000753
  • Dibike, Y.B. et al. 2021. Assessing climatic drivers of spring mean and annual maximum flows in western Canadian river basins. Water, 13 (12), 1617. DOI: 10.3390/w13121617
  • Espey, Jr. W.H. Morgan, C.W. and Masch, F.D. 1966. A study of some effects of urbanization on storm runoff from a small watershed. Texas water development board, Report 23, Texas University, 110 p.
  • FAA, 1970. Airport drainage. AC 150/5320-5B. Department of transportation. United-States federal aviation administration. Washington. D.C. 80 p.
  • Folmar N.D. and Miller A.C. 2008. Development of an empirical lag time equation. Journal of Irrigation and Drainage Engineering, 134 (4), 501-506. doi: 10.1061/(ASCE)0733-9437(2008)134:4(501)
  • Gagné G. et al. 2013. Classement des séries de sols minéraux du Québec selon les groupes hydrologiques. Rapport final, IRDA, Québec, Canada, 81 p.
  • Gasset N. et al. 2021. A 10 km North American Precipitation and Land Surface Reanalysis Based on the GEM Atmospheric Model. Hydrology and Earth System Sciences, 25 (9), 4917-4945. doi: 10.5194/hess-2021-41
  • Gericke O.J. and Smithers J.C. 2016a. Are estimates of watershed response time inconsistent as used in current flood hydrology practice in South Africa. Journal of the South African Institution of Civil Engineering, 58 (1), 2-15. doi: 10.17159/2309-8775/2016/v58n1a1
  • Gericke O.J. and Smithers J.C. 2016b. Derivation and verification of empirical watershed response time equations for medium to large catchments in South Africa. Hydrological Processes, 30 (23), 4384-4404, doi: 10.1002/hyp.10922
  • Gericke O.J. and Smithers J.C. 2014. Review of methods used to estimate watershed response time for the purpose of peak discharge estimation. Hydrological Sciences Journal, 59 (11), 1935-1971. doi: 10.1080/02626667.2013.866712
  • Grimaldi, S. and Petroselli, A. 2015. Do we still need the Rational Formula? An alternative empirical procedure for peak discharge estimation in small and ungauged basins. Hydrological Sciences Journal, 60 (1), 67-77. doi: 10.1080/02626667.2014.880546
  • Grimaldi S. et al. 2012. Time of concentration: a paradox in modern hydrology. Hydrological Sciences Journal, 57 (2), 217-228. doi: 10.1080/02626667.2011.644244
  • Hatkanir, T. and Sezen, N. 1990. Suitability of two-parameter gamma and three parameter beta distributions as synthetic unit hydrographs in Anatolia. Hydrological Sciences Journal, 35 (2), 167-184. doi: 10.1080/02626669009492416
  • Hotchkiss, R.H. and Mc Callum, B.E. 1995. Peak Discharge for small agricultural watersheds. Journal of Hydraulic Engineering, 121 (1), 36-48. doi: 10.1061/(ASCE)0733-9429(1995)121:1(36)
  • Hudson, D.T. et al. 2021. Streamflow regime of a lake-stream system based on long-term data from a high-density hydrometric network. Hydrological Processes, 35 (10), e14396. doi: 10.1002/hyp.14396
  • Institute of hydrology (1980). Low flow studies, Report No 1. Research report, Crowmarsh Gifford, Wallingford, Oxon, 42 p.
  • Jena, M. and Dehuri, S. 2020. Decision tree for classification and regression: A state-of-the Art review. Informatica, 44, 405-420. doi: 10.31449/inf.v44i4.3023
  • Kadykalo, A.N. and Findlay, C.S. 2016. The flow regulation services of wetlands. Ecosystem Services, 20, 91-103. doi: 10.1016/j.ecoser.2016.06.005
  • Kennedy, G. and Mayer, T. 2002. Natural and constructed wetlands in Canada: An overview. Water Quality Research Journal of Canada, 37 (2), 295-325. doi: 10.2166/wqrj.2002.020
  • Kennedy, R.J. and Watt, W.E. 1967. The relationship between lag time and the physical characteristics of drainage basins in Southern Ontario. International Association of Scientific Hydrology, Symposium on Flood and their computation, 85, 866-874.
  • Kerby, W.S. 1959. Time of concentration for overland flow. Civil Engineering, 26 (3), 59-60.
  • Kirpich Z.P. 1940. Time of concentration of small agricultural watersheds. Civil Engineering, 10 (6), 362.
  • Leach, J.A. and Laudon, H. 2019. Headwater lakes and their influence on downstream discharge. Limnology and Oceanography Letters, 4 (4), 105-112. doi: 10.1002/lol2.10110
  • Loh, W.Y. 2011. Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1 (1), 14-23. doi: 10.1002/widm.8
  • Mailhot, A. et al. 2021. Révision des critères de conception des ponceaux pour des bassins de drainage de 25 km2 et moins dans un contexte de changements climatiques (CC06.2). Rapport Final, Institut National de la Recherche Scientifique INRS-Eau, Terre et Environnement, Québec, mars 2021, 291 p. (in French).
  • Mailhot, A. Bolduc, S. and Talbot, G. 2018. Révision des critères de conception des ponceaux pour des bassins de drainage de 25 km2 et moins dans un contexte de changements climatiques (CC06.1). Rapport Final, Institut National de la Recherche Scientifique INRS-Eau, Terre et Environnement, Québec, mars 2018 (In French).
  • McCuen, R.H. 2009. Uncertainty analyses of watershed time parameters. Journal of Hydrologic Engineering, 14 (5), 490-498. doi: 10.1061/(ASCE)HE.1943-5584.0000011
  • McCuen R.H. Wong S.L. and Rawls W.J. 1984. Estimating urban time of concentration. Journal of Hydraulic Engineering, 110 (7), 887-904.
  • Michailidi, E.M. et al. 2018. Timing the time of concentration: shedding light on a paradox. Hydrological Sciences Journal, 63 (5), 721-740, doi: 10.1080/02626667.2018.1450985
  • Michaud, A.R. et al. 2014. Développement et validation de méthodes de prédiction du ruissellement et des débits de pointe en support à l’aménagement hydro-agricole. Rapport final, Institut de recherche et de développement en agroenvironnement inc. (IRDA), Québec, Canada, 142 pp (in French).
  • Michelon, A. et al. 2021. Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment. Hydrology and Earth System Sciences, 25 (4), 2301-2325. doi: 10.5194/hess-25-2301-2021
  • Mimikou, M. 1984. Regional relationships between basin size and runoff characteristics. Hydrological Sciences Journal, 29 (1), 63-73. doi: 10.1080/02626668409490922
  • MTO (1997). Drainage management manual. Part 3, Chapter 8, Drainage and hydrology section, Transportation engineering branch, Quality and standards division, Ministry of Transportation Ontario. 184 p.
  • Mulvany, T. J. 1851. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Proceeding Institution of Civil Engineers of Ireland, 4 (2), 18–33.
  • Nathan, R.J. and McMahon, T.A. 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26 (7), 1465-1473, doi: 10.1029/WR026i007p01465
  • Newman, A.J. 2019. Methodological intercomparisons of station-based gridded meteorological products: Utility, limitations, and paths forward. Journal of Hydrometeorology, 20 (3), 531-547. doi: 10.1175/JHM-D-18-0114.1
  • Onda, Y. et al. 2001. The role of subsurface runoff through bedrock on storm flow generation. Hydrological Processes, 15 (10), 1693-1706. doi: 10.1002/hyp.234
  • Paschalis, A. et al. 2014. On the effects of small scale space-time variability of rainfall on basin flood response. Journal of Hydrology, 514, 33-327. doi: 10.1016/j.jhydrol.2014.04.014
  • Pilgrim. D.H. and Cordery, I. 1993. Chapter 9: Flood runoff. In Maidment, D.T. Handbook of hydrology. McGraw-Hill, New-York, USA.
  • Quin, A. and Destouni, G. 2018. Large-scale comparison of flow-variability dampening by lakes and wetlands in the landscape. Land Degradation & Development, 29, 3617-3627. doi: 10.1002/ldr.3101
  • Quiton, W.L. and Roulet, N.T. 1998. Spring and summer runoff hydrology of a subarctic patterned wetland. Arctic and Alpine Research, 30 (3), 285-294. doi: 10.2307/1551976
  • Ramser, C.E. 1927. Run-off from small agricultural areas. Journal of Agricultural Research, 34 (9), 797-823.
  • Ravazzani, G. et al. 2019. Review of Time-of-Concentration Equations and a New Proposal in Italy. Journal of Hydrologic Engineering, 24 (10), 04019039. doi: 10.1061/(asce)he.1943-5584.0001818
  • Rossmiller R. 1980. The rational formula revisited. International symposium on urban storm runoff, University of Kentucky, Lexington, Kentucky, July 28-31, 1980, p. 1-12.
  • Roulet, N.T. and Woo, M.K. 1988. Runoff generation in low arctic drainage basin. Journal of Hydrology, 101 (1-4), 213-226. doi: 10.1016/0022-1694(88)90036-4
  • Sheridan J.M. 1994. Hydrograph time parameters for flatland watershed. Transactions of the ASCE, 37 (1), 103-113.
  • Singh V.P. 1997. Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrological Processes, 11 (12), 1649-1669. doi: 10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1
  • Singh, V.P. 1988. Hydrologic systems: Volume 1, Rainfall-runoff modeling. Prentice Hall, Englewood Cliffs, New Jersey, 480 p.
  • Tarasova, L. et al. 2018. Exploring controls on rainfall-runoff events: 1. Time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resources Research, 54 (10), 7711–7732, doi: 10.1029/2018WR022587
  • Taylor, C.H. and Pierson, D.C. 1984. The effect of a small wetland on runoff response during spring snowmelt. Atmosphere-Ocean, 23 (2), 137-154.
  • Thomas, Jr. W.O. Monde, M.C. and Davis, S.R. 2000. Estimation of time of concentration for Maryland streams. Transportation Research Record, 1720 (1), 95-99. doi: 10.3141/1720-11
  • Tiner, R. 2010. Wetlands of the Northeast: Results of the National Wetlands Inventory. U.S. Fish and Wildlife Service, Northeast Region, Hadley, MA. 71 p.
  • Transports Québec, 2017. Manuel de conception des ponceaux. Ministère des transports du Québec, Division des structures, 541 p.
  • USBR, 1973. Design of small dams. 2nd ed. Washington, DC: Water Resources Technical Publications, United States Bureau of Reclamation.
  • Williams G.B. 1922. Flood discharge and the dimensions of spillways in India. The Engineer, Sept. 29, 321-322.
  • Wu, I.P. 1963. Design hydrographs for small watershed in Indiana. Journal of Hydraulic Engineering, 89 (6), 35-66.
  • Xie, J. et al. 2020. Evaluation of typical methods for baseflow separation in the contiguous United States. Journal of Hydrology, 583, 124628. doi: 10.1016/j.jhydrol.2020.124628
  • Yang, Y. Endreny, T.A. and Nowak, D.J. 2015. Simulating double-peak hydrographs from single storms over mixed-used watersheds. Journal of Hydrologic Engineering, 20 (11), Technical note. doi: 10.1061/(ASCE)HE.1943-5584.0001225
  • Young, C.B. and McEnroe, B.M. 2014. Evaluating the form of the rational equation. Journal of Hydrologic Engineering, 19 (1), 265-269. doi: 10.1061/(ASCE)HE.1943-5584.0000769
  • Young, C.B. McEnroe, B.M. and Rome, A.C. 2009. Empirical determination of rational method runoff coefficient. Journal of Hydrologic Engineering, 14 (12), 1283-1289. doi: 10.1061/(ASCE)HE.1943-5584.0000114