0
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Evaluation of input variable selection methods in artificial neural networks for estimating missing daily precipitation

ORCID Icon & ORCID Icon
Received 10 Nov 2023, Accepted 08 Jul 2024, Accepted author version posted online: 31 Jul 2024
Accepted author version

References

  • Chinasho, A. Bedadi, B. Lemma, T. Tana, T. Hordofa, T. & Elias, B. 2021. Evaluation of Seven Gap-Filling Techniques for Daily Station-Based Rainfall Datasets in South Ethiopia. Advances in Meteorology 2021, 1–15. doi:10.1155/2021/9657460
  • Dariane, A.B. & Azimi, Sh. 2016. Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using ANFIS models. Hydrological Sciences Journal 61(3), 585–600. doi:10.1080/02626667.2014.988155
  • Dariane, Alireza B, Ashrafi Gol, M. & Karami, F. 2019. Forecasting of rainfall using different input selection methods on climate signals for neural network inputs. Journal of Hydraulic Structures 5(1), 42–59. Shahid Chamran University of Ahvaz. doi: 10.22055/jhs.2019.29625.1113.
  • Dariane, Alireza B. & Behbahani, M. M. 2023. Development of an efficient input selection method for NN based streamflow model. Journal of Applied Water Engineering and Research 11(1), 127–140. doi:10.1080/23249676.2022.2088631
  • Dariane, Alireza B. & Moradi, A. M. 2016. Comparative analysis of evolving artificial neural network and reinforcement learning in stochastic optimization of multireservoir systems. Hydrological Sciences Journal 61(6), 1141–1156. doi:10.1080/02626667.2014.986485
  • Djerbouai, S. 2022. Missing Precipitation Data Estimation Using Long Short-Term Memory Deep Neural Networks. Journal of Ecological Engineering 23(5), 216–225. doi:10.12911/22998993/147322
  • Duarte, L. V. Formiga, K. T. M. & Costa, V. A. F. 2022. Comparison of Methods for Filling Daily and Monthly Rainfall Missing Data: Statistical Models or Imputation of Satellite Retrievals? Water (Basel) 14(19), 3144. doi:10.3390/w14193144
  • Fagandini, C. Todaro, V. Tanda, M. G. Pereira, J. L. Azevedo, L. & Zanini, A. 2023. Missing Rainfall Daily Data: A Comparison Among Gap-Filling Approaches. Math Geosci. doi:10.1007/s11004-023-10078-6
  • Fallah-Gha, G. A. Mousavi-Ba, M. & Habibi-Nok, M. 2009. Seasonal Rainfall Forecasting Using Artificial Neural Network. Journal of Applied Sciences 9(6), 1098–1105. doi:10.3923/jas.2009.1098.1105
  • Feng, K. & Tian, J. 2021. Forecasting reference evapotranspiration using data mining and limited climatic data. Eur J Remote Sens 54(sup2), 363–371. doi:10.1080/22797254.2020.1801355
  • Ghazvinian, H. Bahrami, H. Ghazvinian, H. & Heddam, S. 2020. Simulation of monthly precipitation in semnan city using ANN artificial Intelligence model. Journal of Soft Computing in Civil Engineering 4(4), 36–46. Pouyan Press. 10.22115/scce.2020.242813.1251
  • Hung, N. Q. Babel, M. S. Weesakul, S. & Tripathi, N. K. 2009. An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol Earth Syst Sci 13(8), 1413–1425. doi:10.5194/hess-13-1413-2009
  • Kalteh, A. M. Hjorth, P. & Berndtsson, R. 2008. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environmental Modelling & Software 23(7), 835–845. doi:10.1016/j.envsoft.2007.10.001
  • Kang, S. 2021. k-Nearest Neighbor Learning with Graph Neural Networks. Mathematics 9(8), 830. doi:10.3390/math9080830
  • Karami, F. & Dariane, A. B. 2022. Melody Search Algorithm Using Online Evolving Artificial Neural Network Coupled with Singular Spectrum Analysis for Multireservoir System Management. Iranian Journal of Science and Technology, Transactions of Civil Engineering 46(2), 1445–1457. doi:10.1007/s40996-021-00680-1
  • Kohonen, T. 1990. The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480. doi:10.1109/5.58325
  • Kohonen, Teuvo. 2013. Essentials of the self-organizing map. Neural Networks 37, 52–65. doi:10.1016/j.neunet.2012.09.018
  • Lakshminarayana, S. V. 2020. Rainfall Forecasting using Artificial Neural Networks (ANNs): A Comprehensive Literature Review. Indian Journal of Pure & Applied Biosciences 8(4), 589–599. doi:10.18782/2582-2845.8250
  • Leal, J. E. 2020. AHP-express: A simplified version of the analytical hierarchy process method. MethodsX 7, 100748. doi:10.1016/j.mex.2019.11.021
  • Lee, J. Kim, C.-G. Lee, J. Kim, N. & Kim, H. 2018. Application of Artificial Neural Networks to Rainfall Forecasting in the Geum River Basin, Korea. Water (Basel) 10(10), 1448. doi:10.3390/w10101448
  • Liu, B. Zhang, T. Li, Y. Liu, Z. & Zhang, Z. 2021. Kernel Probabilistic K-Means Clustering. Sensors 21(5), 1892. doi:10.3390/s21051892
  • MacLeod, C. 1999. The Synthesis of Artificial Neural Networks using Single String Evolutionary Techniques. The Robert Gordon University, Aberdeen UK.
  • Maier, H. R. & Dandy, G. C. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15(1), 101–124. doi:10.1016/S1364-8152(99)00007-9
  • Mitchell, T. M. & Learning, M. 1997. McGraw-Hill Science/Engineering/Math, March 1997. Chap. II 23.
  • Nilsson, P. Uvo, C. B. & Berndtsson, R. 2006. Monthly runoff simulation: Comparing and combining conceptual and neural network models. J Hydrol (Amst) 321(1–4), 344–363. doi:10.1016/j.jhydrol.2005.08.007
  • Oti, E. U. Olusola, M. O. Eze, F. C. & Enogwe, S. U. 2021. Comprehensive Review of K-Means Clustering Algorithms. International Journal of Advances in Scientific Research and Engineering 07(08), 64–69. doi:10.31695/IJASRE.2021.34050
  • Papailiou, I. Spyropoulos, F. Trichakis, I. & Karatzas, G. P. 2022. Artificial Neural Networks and Multiple Linear Regression for Filling in Missing Daily Rainfall Data. Water (Basel) 14(18), 2892. doi:10.3390/w14182892
  • Peterson, L. 2009. K-nearest neighbor. Scholarpedia 4(2), 1883. doi:10.4249/scholarpedia.1883
  • Portuguez-Maurtua, M. Arumi, J. L. Lagos, O. Stehr, A. & Montalvo Arquiñigo, N. 2022. Filling Gaps in Daily Precipitation Series Using Regression and Machine Learning in Inter-Andean Watersheds. Water (Basel) 14(11), 1799. doi:10.3390/w14111799
  • Rajput, J. Singh, M. Lal, K. Khanna, M. Sarangi, A. Mukherjee, J. & Singh, S. 2023. Performance evaluation of soft computing techniques for forecasting daily reference evapotranspiration. Journal of Water and Climate Change 14(1), 350–368. doi:10.2166/wcc.2022.385
  • Saaty, T. L. 1980. The Analytic Hierarchy Process Mcgraw Hill, New York. Agricultural Economics Review 70, 34.
  • Solgi, A. Nourani, V. & Pourhaghi, A. 2014. Forecasting Daily Precipitation Using Hybrid Model of Wavelet-Artificial Neural Network and Comparison with Adaptive Neurofuzzy Inference System (Case Study: Verayneh Station, Nahavand). Advances in Civil Engineering 2014, 1–12. doi:10.1155/2014/279368
  • Tarigan, A. P. M. Rahmad, D. Sembiring, R. A. & Iskandar, R. 2018. An application of the AHP in water resources management: a case study on urban drainage rehabilitation in Medan City. IOP Conf Ser Mater Sci Eng 309, 012096. doi:10.1088/1757-899X/309/1/012096
  • Thungngern, J. Wijitkosum, S. Sriburi, T. & Sukhsri, C. 2015. A Review of the Analytical Hierarchy Process (AHP): An Approach to Water Resource Management in Thailand. Applied Environmental Research 13–32. doi:10.35762/AER.2015.37.3.2
  • Tran, T. T. K. Bateni, S. M. Ki, S. J. & Vosoughifar, H. 2021. A Review of Neural Networks for Air Temperature Forecasting. Water (Basel) 13(9), 1294. doi:10.3390/w13091294
  • Wang, S. Li, M. Hu, N. Zhu, E. Hu, J. Liu, X. & Yin, J. 2019. K-Means Clustering With Incomplete Data. IEEE Access 7, 69162–69171. doi:10.1109/ACCESS.2019.2910287
  • Weerasinghe, H. D. P. Premaratne, H. L. & Sonnadara, D. U. J. 2010. Performance of neural networks in forecasting daily precipitation using multiple sources. J Natl Sci Found 38(3), 163. doi:10.4038/jnsfsr.v38i3.2305
  • Zlaugotne, B. Zihare, L. Balode, L. Kalnbalkite, A. Khabdullin, A. & Blumberga, D. 2020. Multi-Criteria Decision Analysis Methods Comparison. Environmental and Climate Technologies 24(1), 454–471. doi:10.2478/rtuect-2020-0028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.