1,168
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Using visual representations in identifying students’ preconceptions in friction

ORCID Icon

References

  • Adair, J. G., D. Sharpe, and C.-L. Huynh. 1989. “Hawthorne Control Procedures in Educational Experiments: A Reconsideration of Their Use and Effectiveness.” Review of Educational Research 59 (2): 215–228. doi:10.3102/00346543059002215.
  • Ainsworth, S., V. Prain, and R. Tytler. 2011. “Drawing to Learn in Science.” Science 333 (6046): 1096–1097. doi:10.1126/science.1183944.
  • Ametller, J., and R. Pintó. 2002. “Students’ Reading of Innovative Images of Energy at Secondary School Level.” International Journal of Science Education 24 (3): 285–312. doi:10.1080/09500690110078914.
  • Anderson, J. L., J. P. Ellis, and A. M. Jones. 2014. “Understanding Early Elementary Children’s Conceptual Knowledge of Plant Structure and Function through Drawings.” CBE—Life Sciences Education 13 (3): 375–386. Edited by Emily A. Holt . doi:10.1187/cbe.13-12-0230.
  • Besson, U., L. Borghi, A. De Ambrosis, and P. Mascheretti. 2007. “How to Teach Friction: Experiments and Models.” American Journal of Physics 75 (12): 1106–1113. doi:10.1119/1.2779881.
  • Besson, U., and L. Viennot. 2004. “Using Models at the Mesoscopic Scale in Teaching Physics: Two Experimental Interventions in Solid Friction and Fluid Statics.” International Journal of Science Education 26 (9): 1083–1110. doi:10.1080/0950069042000205396.
  • Bonanno, A., G. Bozzo, M. Grandinetti, and P. Sapia. 2016. “Work– Energy Theorem and Friction Forces: Two Experiments.” Physics Education 51 (6): 065004. doi:10.1088/0031-9120/51/6/065004.
  • Boonen, A. J. H., M. van der Schoot, F. van Wesel, M. H. de Vries, and J. Jolles. 2013. “What Underlies Successful Word Problem Solving? A Path Analysis in Sixth Grade Students.” Contemporary Educational Psychology 38 (3): 271–279. doi:10.1016/J.CEDPSYCH.2013.05.001.
  • Boonen, A. J. H., F. van Wesel, J. Jolles, and M. van der Schoot. 2014. “The Role of Visual Representation Type, Spatial Ability, and Reading Comprehension in Word Problem Solving: an Item-Level Analysis in Elementary School Children.” International Journal of Educational Research 68 (January): 15–26. doi:10.1016/J.IJER.2014.08.001.
  • Camp, C. W., and J. J. Clement. 2010. Preconceptions in Mechanics: Lessons Dealing with Students’ Conceptual Difficulties. 2nd ed. Iowa, USA: Kendall/Hunt.
  • Carey, S. 1985. Conceptual Change in Childhood. Cambridge, MA: MIT Press.
  • Cauley, K. M., and J. H. McMillan. 2010. “Formative Assessment Techniques to Support Student Motivation and Achievement.” The Clearing House: A Journal of Educational Strategies, Issues and Ideas 83 (1): 1–6. doi:10.1080/00098650903267784.
  • Chabalengula, V. M., M. Sanders, and F. Mumba. 2012. “Diagnosing Students’ Understanding of Energy and Its Related Concepts in Biological Context.” International Journal of Science and Mathematics Education 10 (2): 241–266. doi:10.1007/s10763-011-9291-2.
  • Chen, Z., and G. Gladding. 2014. “How to Make A Good Animation: A Grounded Cognition Model of How Visual Representation Design Affects the Construction of Abstract Physics Knowledge.” Physical Review Special Topics - Physics Education Research 10 (1): 010111. doi:10.1103/PhysRevSTPER.10.010111.
  • Chia, T. C. 1996. “Common Misconceptions in Frictional Force among University Physics Students.” Teaching and Learning 16 (2): 107–116. https://repository.nie.edu.sg/handle/10497/434
  • Chiesa, M., and S. Hobbs. 2008. “Making Sense of Social Research: How Useful Is the Hawthorne Effect?” European Journal of Social Psychology 38 (1): 67–74. doi:10.1002/ejsp.401.
  • Chiou, G.-L., M.-H. Lee, and C.-C. Tsai. 2013. “High School Students’ Approaches to Learning Physics with Relationship to Epistemic Views on Physics and Conceptions of Learning Physics.” Research in Science & Technological Education 31 (1): 1–15. doi:10.1080/02635143.2013.794134.
  • Clarke, I., T. B. Flaherty, and M. Yankey. 2006. “Teaching the Visual Learner: the Use of Visual Summaries in Marketing Education.” Journal of Marketing Education 28 (3): 218–226. doi:10.1177/0273475306291466.
  • Cobb, P., E. Yackel, and T. Wood. 1992. “A Constructivist Alternative to the Representational View of Mind in Mathematics Education., Journal for Research in Mathematics Education, 1992.” Journal for Research in Mathematics Education 23 (1): 2–33. doi:10.2307/749161.
  • Coleman, J. M., E. M. McTigue, and L. B. Smolkin. 2011. “Elementary Teachers’ Use of Graphical Representations in Science Teaching.” Journal of Science Teacher Education 22 (7): 613–643. doi:10.1007/s10972-010-9204-1.
  • Cook, D. L. 1962. “The Hawthorne Effect in Educational Research.” The Phi Delta Kappan 44 (3): 116–122. https://www.jstor.org/stable/20342865?seq=1#metadata_info_tab _contents
  • Corpuz, E. D., and N. Sanjay Rebello. 2011a. “Investigating Students’ Mental Models and Knowledge Construction of Microscopic Friction. I. Implications for Curriculum Design and Development.” Physical Review Special Topics - Physics Education Research 7 (2): 020102. doi:10.1103/PhysRevSTPER.7.020102.
  • Corpuz, E. D., and N. Sanjay Rebello. 2011b. “Investigating Students’ Mental Models and Knowledge Construction of Microscopic Friction. II. Implications for Curriculum Design and Development.” Physical Review Special Topics - Physics Education Research 7 (2): 020103. doi:10.1103/PhysRevSTPER.7.020103.
  • Corpuz, E. G., and N. Sanjay Rebello. 2007. “Hands-On and Minds-On Modeling Activities to Improve Students’ Conceptions of Microscopic Friction.” In Physics Education Research Conference, edited by L. Hsu, C. Henderson, and L. McCullough, 951vols, 73–76. Greensboro, NC: American Institute of Physics.
  • Dauer, J. T., J. L. Momsen, E. B. Speth, S. C. Makohon-Moore, and T. M. Long. 2013. “Analyzing Change in Students’ Gene-to-Evolution Models in College-Level Introductory Biology.” Journal of Research in Science Teaching 50 (6): 639–659. doi:10.1002/tea.21094.
  • Debrenti, E. 2015. “Visual Representations in Mathematics Teaching: an Experiment with Students.” Acta Didactica Napocensia 8 (1): 19–25. https://eric.ed.gov/?id=EJ1064387
  • Demirci, N. 2005. “A Study about Students’ Misconceptions in Force and Motion Concepts by Incorporating A Web-Assisted Physics Program.” The Turkish Online Journal of Educational Technology 4: 1303–6521. http://www.tojet.net/articles/v4i3/437.pdf
  • Dikmenli, M. 2010. “Misconceptions of Cell Division Held by Student Teachers in Biology: A Drawing Analysis.” Scientific Research and Essays 5 (2): 235–247. https://academicjournals.org/journal/SRE/article- abstract/E98624416980
  • diSessa, A. A. 1993. “Toward an Epistemology of Physics.” Cognition and Instruction 10 (2–3): 105–225. doi:10.1080/07370008.1985.9649008.
  • diSessa, A. A. 2018. “A Friendly Introduction to ‘Knowledge in Pieces’: Modeling Types of Knowledge and Their Roles in Learning.” In Invited Lectures from the 13th International Congress on Mathematical Education. ICME-13 Monographs, edited by G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, and B. Xu, 65–84. Cham: Springer.
  • Dove, J. E., L. A. Everett, and P. F. W. Preece. 1999. “Exploring a Hydrological Concept through Children’s Drawings.” International Journal of Science Education 21 (5): 485–497. doi:10.1080/095006999290534.
  • Driver, R., H. Asoko, J. Leach, P. Scott, and E. Mortimer. 1994. “Constructing Scientific Knowledge in the Classroom.” Educational Researcher 23 (7): 5–12. doi:10.3102/0013189X023007005.
  • Driver, R., and J. Easley. 1978. “Pupils and Paradigms: A Review of Literature Related to Concept Development in Adolescent Science Students.” Studies in Science Education 5 (1): 61–84. doi:10.1080/03057267808559857.
  • Duncan, P. A. 2013. “Drawing as a Method for Accessing Young Children’s Perspectives in Research.” Doctoral Thesis, Scotland, UK: University of Stirling. https://dspace.stir.ac.uk
  • Edens, K. M., and E. Potter. 2003. “Using Descriptive Drawings as a Conceptual Change Strategy in Elementary Science.” School Science and Mathematics 103 (3): 135–144. doi:10.1111/j.1949-8594.2003.tb18230.x.
  • Edens, K. M., and E. F. Potter. 2001. “Promoting Conceptual Understanding through Pictorial Representation.” Studies in Art Education 42 (3). doi:10.1080/00393541.2001.11651699.
  • Ehrlén, K. 2009. “Drawings as Representations of Children’s Conceptions.” International Journal of Science Education 31 (1): 41–57. doi:10.1080/09500690701630455.
  • Eilam, B., and J. K. Gilbert, eds. 2014a. Science Teachers’ Use of Visual Representations. Switzerland: Springer International Publishing.
  • Eilam, B., and J. K. Gilbert. 2014b. “The Significance of Visual Representations in the Teaching of Science.” In Models and Modeling in Science Education, edited by B. Eilam and J. Gilbert, 3–28. Cham: Springer.
  • Ekici, F., E. Ekici, and F. Aydin. 2007. “Utility of Concept Cartoons in Diagnosing and Overcoming Misconceptions Related to Photosynthesis.” International Journal of Environmental and Science Education 2 (4): 111–124. https://eric.ed.gov/?id=EJ901275
  • Evagorou, M., S. Erduran, and T. Mäntylä. 2011. “The Role of Visual Representations in Scientific Practices: from Conceptual Understanding and Knowledge Generation to ‘seeing’ How Science Works.” International Journal of STEM Education 2 (11). doi:10.1186/s40594-015-0024-x.
  • Farrokhi, F., and A. Mahmoudi-Hamidabad. 2012. “Rethinking Convenience Sampling: Defining Quality Criteria.” Theory and Practice in Language Studies 2 (4): 784–792. doi:10.4304/tpls.2.4.784-792.
  • Fleming, N. D., and C. Mills. 1992. “Not Another Inventory, Rather a Catalyst for Reflection.” To Improve the Academy 11: 137. doi:10.1002/j.2334-4822.1992.tb00213.x.
  • Flevares, L. M., and M. Perry. 2001. “How Many Do You See? the Use of Nonspoken Representations in First-Grade Mathematics Lessons.” Journal of Educational Psychology 93 (2): 330–345. doi:10.1037/0022-0663.93.2.330.
  • Glenn, L. 2006. “Visual Media and the Humanities (review of the Book A Pedagogy of Representation, by K. D. McBride).” Educational Technology and Society 9 (4): 244–245. https://pdfs.semanticscholar.org/3490/936ba81adbd3a6f7a2ff087 3efec192d5883.pdf?_ga=2.98911130.560002185.1565672350-1730463977.1565672350
  • Glynn, S., and K. Denise Muth. 2008. “Using Drawing Strategically.” Science and Children 45 (9): 48–51. https://search.proquest.com/openview/46f24c646da4150614f26d06 d0472ffb/1?pq-origsite=gscholar&cbl=41736
  • Greenstein, L. 2010. What Teachers Really Need to Know about Formative Assessment. Alexandria, VA: ASCD.
  • Harle, M., and M. H. Towns. 2013. “Students’ Understanding of Primary and Secondary Protein Structure: Drawing Secondary Protein Structure Reveals Student Understanding Better than Simple Recognition of Structures.” Biochemistry and Molecular Biology Education 41 (6): 369–376. doi:10.1002/bmb.20719.
  • Hatano, G., and K. Inagaki. 1996. “Cognitive and Cultural Factors in the Acquisition of Intuitive Biology.” In The Handbook of Education and Human Development, edited by D. R. Olson and N. Torrance, 657–680. Oxford, UK: Blackwell Publishing Ltd. doi:10.1111/b.9780631211860.1998.00030.x.
  • Hestenes, D., M. Wells, and G. Swackhamer. 1992. “Force Concept Inventory.” The Physics Teacher 30 (3): 141–58. doi:10.1119/1.2343497.
  • Heynen, C. 2008. “Viewing and Visual Representation in the Physical Education Classroom.” Strategies 22 (1): 25–30. doi:10.1080/08924562.2008.10590805.
  • Ibrahim, B., and N. Sanjay Rebello. 2013. “Role of Mental Representations in Problem Solving: Students’ Approaches to Nondirected Tasks.” Physical Review Special Topics - Physics Education Research 9 (2): 020106. doi:10.1103/PhysRevSTPER.9.020106.
  • Ifenthaler, D., I. Masduki, and N. M. Seel. 2011. “The Mystery of Cognitive Structure and How We Can Detect It: Tracking the Development of Cognitive Structures over Time.” Instructional Science 39 (1): 41–61. doi:10.1007/s11251-009-9097-6.
  • Ishimoto, M., B. Paosawatyanyong, and P. Wattanakasiwich. 2010. “Preconceptions of Japanese Students Surveyed Using the Force and Motion Conceptual Evaluation.” In International Conference on Physics Education, Bangkok, Thailand, 147–50. 1263 vols. American Institute of Physics.
  • Kelly-Jackson, C., and S. Delacruz. 2014. “Using Visual Literacy to Teach Science Academic Language: Experiences from Three Preservice Teachers.” Action in Teacher Education 36 (3): 192–210. doi:10.1080/01626620.2014.917364.
  • Kim, E., and S.-J. Pak. 2002. “Students Do Not Overcome Conceptual Difficulties after Solving 1000 Traditional Problems.” American Journal of Physics 70 (7): 759–765. doi:10.1119/1.1484151.
  • Koopman, O. 2017. “Investigating How Science Teachers in South Africa Engage with All Three Levels of Representation in Selected Chemistry Topics.” African Journal of Research in Mathematics, Science and Technology Education 21 (1): 15–25. doi:10.1080/18117295.2016.1261546.
  • Köse, S. 2008. “Diagnosing Student Misconceptions: Using Drawings as a Research Method.” World Applied Sciences Journal 3 (2): 283–293. http://idosi.org/wasj/wasj3%282%29/20.pdf
  • Kozma, R., E. Chin, J. Russell, and N. Marx. 2000. “The Roles of Representations and Tools in the Chemistry Laboratory and Their Implications for Chemistry Learning Center for Technology in Learning SRI International.” The Journal of the Learning Sciences 9: 105–143. doi:10.1207/s15327809jls0902_1.
  • Kurnaz, M. A., and C. Ekşi. 2015. “An Analysis of High School Students’ Mental Models of Solid Friction in Physics.” Educational Sciences: Theory & Practice 15 (3). doi:10.12738/estp.2015.3.2526.
  • Lambert, V. A., and C. E. Lambert. 2012. “Qualitative Descriptive Research: An Acceptable Design.” Pacific Rim International Journal of Nursing Research 16 (4): 255–256. https://tci-thaijo.org/index.php/PRIJNR/article/view/5805
  • Lark, A. 2007. “Student Misconceptions in Newtonian Mechanics.” Masters Thesis, Ohio: Bowling Green State University. https://etd.ohiolink.edu
  • Larsson, J. 2013. “Children’s Encounters with Friction as Understood as a Phenomenon of Emerging Science and as ‘opportunities for Learning.” Journal of Research in Childhood Education 27 (3): 377–392. doi:10.1080/02568543.2013.796335.
  • Lin, S.-Y., and C. Singh. 2015. “Effect of Scaffolding on Helping Introductory Physics Students Solve Quantitative Problems Involving Strong Alternative Conceptions.” Physical Review Special Topics - Physics Education Research 11 (2): 020105. doi:10.1103/PhysRevSTPER.11.020105.
  • Ma Oliva, J. 1999. “Structural Patterns in Students’ Conceptions in Mechanics.” International Journal of Science Education 21 (9): 903–920. doi:10.1080/095006999290228.
  • Mayer, R. E. 2003. Learning and Instruction. Upper Saddle River, NJ: Prentice Hall.
  • Mayer, R. E. 2009. Multimedia Learning. Cambridge: Cambridge University Press.
  • Mayer, R. E., W. Bove, A. Bryman, R. Mars, and L. Tapangco. 1996. “When Less Is More: Meaningful Learning from Visual and Verbal Summaries of Science Textbook Lessons.” Journal of Educational Psychology 88 (1): 64–73. doi:10.1037/0022-0663.88.1.64.
  • Meter, P. V., and J. Garner. 2005. “The Promise and Practice of Learner-Generated Drawing: Literature Review and Synthesis.” Educational Psychology Review 17 (4): 285–325. doi:10.1007/s10648-005-8136-3.
  • Mnguni, L. E. 2014. “The Theoretical Cognitive Process of Visualization for Science Education.” SpringerPlus 3: 184. doi:10.1186/2193-1801-3-184.
  • Montalbano, V. 2013. “An Inquiry-Based Laboratory on Friction.” In The International Conference on Physics Education, 1010–1017. Praha, Czech Republic. https://arxiv.org/abs/1310.2307
  • Mulhall, P., and R. Gunstone. 2012. “Views about Learning Physics Held by Physics Teachers with Differing Approaches to Teaching Physics.” Journal of Science Teacher Education 23 (5): 429–449. doi:10.1007/s10972-012-9291-2.
  • Nurbaety, D., N. Y. Rustaman, and Y. Sanjaya. 2016. “The Use of Drawing Method for Diagnosing Students’ Misconception about Plant Structure in Relation to Photosynthesis.” In International Seminar on Mathematics, Science, and Computer Science Education, edited by T. Hidayat, A. B. D. Nandiyanto, L. Hasanah, R. Rosjanuardi, A. Jupri, I. R. Suwarma, L. S. Riza, W. S. Nahadi, and Khairurrijal, Vol. 1708. 60008. Bandung, Indonesia: American Institute of Physics Publishing.
  • Oktay, O., and D. Kaltakci. 2010. “How Pre-Service Physics Teachers Interpret Static and Kinetic Friction: A Laboratory Experiment.” In Teaching and Learning Physics Today: Challenges? Benefits? edited by W. Kaminski and M. Michelini, 733–741. Reims, France: Università degli Studi di Udine. http://www.univ-reims.fr
  • Özdemir, G., and D. B. Clark. 2007. “An Overview of Conceptual Change Theories.” Eurasia Journal of Mathematics, Science and Technology Education 3 (4): 351–361. doi:10.12973/ejmste/75414.
  • Panprueksa, K., N. Phonphok, M. Boonprakob, and C. Dahsah. 2012. “Thai Students’ Conceptual Understanding on Force and Motion.” In International Conference on Education and Management Innovation. Singapore: IACSIT Press. http://www.ipedr.com/vol30/54- ICEMI%202012-M10050.pdf
  • Patrick, M. D., G. Carter, and E. N. Wiebe. 2005. “Visual Representations of DNA Replication: Middle Grades Students’ Perceptions and Interpretations.” Journal of Science Education and Technology 14 (3): 353–365. doi:10.1007/s10956-005-7200-6.
  • Pickett, G. T. 2015. “A Pedagogical Model of Static Friction.” June. http://arxiv.org/abs/1507.04015
  • Posner, G. J., K. A. Strike, P. W. Hewson, and W. A. Gertzog. 1982. “Accommodation of a Scientific Conception: toward a Theory of Conceptual Change.” Science Education 66 (2): 211–227. doi:10.1002/sce.3730660207.
  • Quillin, K., and S. Thomas. 2015. “Drawing-To-Learn: A Framework for Using Drawings to Promote Model-Based Reasoning in Biology.” CBE Life Sciences Education 14 (1): es2. doi:10.1187/cbe.14-08-0128.
  • Ravanis, K., D. Koliopoulos, and J.-M. Boilevin. 2008. “Construction of A Precursor Model for the Concept of Rolling Friction in the Thought of Preschool Age Children: A Socio-Cognitive Teaching Intervention.” Research in Science Education 38 (4): 421–434. doi:10.1007/s11165-007-9056-7.
  • Ridley, P., and A. Rogers. 2010. Drawing to Learn: Science, Technology, Engineering and Maths. Brighton, UK: University of Brighton.
  • Roam, D. 2008. The Back of the Napkin: Solving Problems and Selling Ideas with Pictures. London: Penguin Group.
  • Schwartz, D. L. 1995. “The Emergence of Abstract Representations in Dyad Problem Solving.” Journal of the Learning Sciences 4 (3): 321–354. doi:10.1207/s15327809jls0403_3.
  • Schwarz, C. V., B. J. Reiser, E. A. Davis, L. Kenyon, A. Achér, D. Fortus, Y. Shwartz, B. Hug, and J. Krajcik. 2009. “Developing a Learning Progression for Scientific Modeling: Making Scientific Modeling Accessible and Meaningful for Learners.” Journal of Research in Science Teaching 46 (6): 632–654. doi:10.1002/tea.20311.
  • Shepardson, D. P., S. Choi, D. Niyogi, and U. Charusombat. 2011. “Seventh Grade Students’ Mental Models of the Greenhouse Effect.” Environmental Education Research 17 (1): 1–17. doi:10.1080/13504620903564549.
  • Shepardson, D. P., D. Niyogi, S. Choi, and U. Charusombat. 2009. “Seventh Grade Students’ Conceptions of Global Warming and Climate Change.” Environmental Education Research 15 (5): 549–570. doi:10.1080/13504620903114592.
  • Sibley, D. F. 2005. “Visual Abilities and Misconceptions about Plate Tectonics.” Journal of Geoscience Education 53 (4): 471–477. doi:10.5408/SIBLEY_V53P471.
  • Skorge, P. 2008. “Visual Representations as Effective Instructional Media in Foreign Language Teaching.” Poznań Studies in Contemporary Linguistics 44 (2): 265–281. doi:10.2478/v10010-008-0011-1.
  • Stagg, B. C., and M. F. Verde. 2018. “A Comparison of Descriptive Writing and Drawing of Plants for the Development of Adult Novices’ Botanical Knowledge.” Journal of Biological Education, January. 1–16. doi:10.1080/00219266.2017.1420683.
  • Street, L. L., and J. B. Luoma. 2002. “Control Groups in Psychosocial Intervention Research: Ethical and Methodological Issues.” Ethics & Behavior 12 (1): 1–30. doi:10.1207/S15327019EB1201_1.
  • Sutton, R. A. 1977. “Diagnosing Prior Knowledge Levels of First-Year University Physics Students.” Programmed Learning and Educational Technology 14 (1): 92–95. doi:10.1080/1355800770140112.
  • Swords, J., K. Askins, M. Jeffries, and C. Butcher. 2013. “Geographic Visualisation: Lessons for Learning and Teaching.” Planet 27 (2): 6–13. doi:10.11120/plan.2013.00001.
  • Thornton, R. K., and D. R. Sokoloff. 1998. “Assessing Student Learning of Newton’s Laws: the Force and Motion Conceptual Evaluation and the Evaluation of Active Learning Laboratory and Lecture Curricula.” American Journal of Physics 66 (4): 338. doi:10.1119/1.18863.
  • Trumper, R., and P. Gorsky. 1996. “A Cross-College Age Study about Physics Students’ Conceptions of Force in Pre- Service Training for High School Teachers.” Physics Education 31 (4): 227–236. doi:10.1088/0031-9120/31/4/021.
  • Tsui, C.-Y., and D. Treagust. 2010. “Evaluating Secondary Students’ Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument.” International Journal of Science Education 32 (8): 1073–1098. doi:10.1080/09500690902951429.
  • Vaismoradi, M., H. Turunen, and T. Bondas. 2013. “Content Analysis and Thematic Analysis: Implications for Conducting a Qualitative Descriptive Study.” Nursing & Health Sciences 15 (3): 398–405. doi:10.1111/nhs.12048.
  • Victoria, M. 2018. “The Verbal and the Visual in Language Learning and Teaching: Insights from the ‘selfie Project.” The Language Learning Journal, June. 1–12. doi:10.1080/09571736.2018.1484797.
  • Viennot, L. 2014. “Thinking the Content for Physics Education Research and Practice.” https://hal.archives-ouvertes.fr/hal-01297374
  • Vosniadou, S. 1994. “Capturing and Modeling the Process of Conceptual Change.” Learning and Instruction 4 (1): 45–69. doi:10.1016/0959-4752(94)90018-3.
  • Weurlander, M., M. Söderberg, M. Scheja, H. Hult, and A. Wernerson. 2012. “Exploring Formative Assessment as a Tool for Learning: Students’ Experiences of Different Methods of Formative Assessment.” Assessment & Evaluation in Higher Education 37 (6): 747–760. doi:10.1080/02602938.2011.572153.
  • Worth, K. 2000. “The Power of Children’s Thinking.” In Inquiry Thoughts, Views, and Strategies for the K-5 Classroom, Foundations 2, edited by Division of Elementary, Secondary and Informal Education, Directorate for Education and Human Resources and National Science Foundation. Arlington, VA: National Science Foundation. https://www.nsf.gov/pubs/2000/nsf99148/pdf/nsf99148.pdf
  • Yusoff, Z., S. A. Katmon, M. N. Ahmad, and S. H. M. Miswan. 2013. “Visual Representation: Enhancing Students’ Learning Engagement through Knowledge Visualization.” In International Conference on Informatics and Creative Multimedia, 242–247. Kuala Lumpur, Malaysia: Institute of Electrical and Electronics Engineers, Inc.
  • Zahner, D., and J. E. Corter. 2010. “The Process of Probability Problem Solving: Use of External Visual Representations.” Mathematical Thinking and Learning 12 (2): 177–204. doi:10.1080/10986061003654240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.