674
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Improving NGSS focused model-based learning curriculum through the examination of students’ experiences and iterated models

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, & show all

References

  • Acher, A., M. Arcà, and N. Sanmartí. 2007. “Modeling as A Teaching Learning Process for Understanding Materials: A Case Study in Primary Education.” Science Education 91 (3): 398–418. doi:10.1002/sce.20196.
  • Achieve Inc. 2017. Primary Evaluation of Essential Criteria (PEEC) for Next Generation Science Standards Instructional Materials Design. Washington, DC: Achieve.
  • Achieve Inc. and National Science Teachers Association (NSTA). 2014. “EQuIP Rubric for Lessons and Units: Science.” https://www.nextgenscience.org/resources/equip‐rubric‐lessons‐units‐science
  • Ambitious Science Teaching. 2015. “Models and Modeling: An Introduction.” http://ambitiousscienceteaching.org/wp-content/uploads/2014/09/Models-and-Modeling-An-Introduction1.pdf
  • Banilower, E. R. 2019. “Understanding the Big Picture for Science Teacher Education: The 2018 NSSME.” Journal of Science Teacher Education 30 (3): 201–208. doi:10.1080/1046560X.2019.1591920.
  • Baumfalk, B., D. Bhattacharya, T. Vo, C. Forbes, L. Zangori, and C. Schwarz. 2019. “Impact of Model‐based Science Curriculum and Instruction on Elementary Students’ Explanations for the Hydrosphere.” Journal of Research in Science Teaching 56 (5): 570–597. doi:10.1002/tea.21514.
  • Böttcher, F., and A. Meisert. 2011. “Argumentation in Science Education: A Model-Based Framework.” Science & Education 20 (2): 103–140. doi:10.1007/s11191-010-9304-5.
  • Bybee, R., and C. Chopyak. 2017. Instructional Materials and Implementation of Next Generation Science Standards: Demand, Supply, and Strategic Opportunities. New York, NY: Carnegie Corporation.
  • Campbell, T., and X. Fazio. 2018. Epistemic frames as an analytical framework for understanding the representation of scientific activity in a modeling-based learning unit. Research in Science Education. https://doi.org/10.1007/s11165-018-9779-7
  • Campbell, T., T. J. McKenna, X. Fazio, A. Hetherington-Coy, and P. Pierce. 2019. Negotiating Coherent Science Teacher Professional Learning Experiences Across a University and Partner School Settings. Journal of Science Teacher Education 30(2): 179–199.
  • Cheng, M. F., and D. E. Brown. 2015. “The Role of Scientific Modeling Criteria in Advancing Students’ Explanatory Ideas of Magnetism.” Journal of Research in Science Teaching 52 (8): 1053–1081. doi:10.1002/tea.21234.
  • Cicchetti, D. V. 1994. “Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology.” Psychological Assessment 6 (4): 284–290. doi:10.1037/1040-3590.6.4.284.
  • Clement, J. 2000. “Model Based Learning as a Key Research Area for Science Education.” International Journal of Science Education 22 (9): 1041–1053. doi:10.1080/095006900416901.
  • Clement, J. 2008. Creative Model Construction in Scientists and Students: The Role of Analogy, Imagery, and Mental Simulation. Amherst, MA: Springer.
  • Creswell, J. W. 2012. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. Boston, MA: Pearson Education.
  • Creswell, J. W., and V. L. Plano Clark. 2011. Designing and Conducting Mixed Methods Research. LA: Sage.
  • Dickerson, D. L., J. E. Penick, K. R. Dawkins, and M. Van Sickle. 2007. “Groundwater in Science Education.” Journal of Science Teacher Education 18 (1): 45–61. doi:10.1007/s10972-006-9019-2.
  • Etikan, I., S. Musa, and R. Alkassim. 2016. “Comparison of Convenience Sampling and Purposive Sampling.” American Journal of Theoretical and Applied Statistics 5 (1): 1–4. doi:10.11648/j.ajtas.20160501.11.
  • Forbes, C. T., L. Zangori, and C. V. Schwarz. 2015. “Empirical Validation of Integrated Learning Performances for Hydrologic Phenomena: 3rd‐Grade Students’ Model‐Driven Explanation‐Construction.” Journal of Research in Science Teaching 52 (7): 895–921. doi:10.1002/tea.21226.
  • Ford, M. 2008. “‘Grasp of Practice’ as a Reasoning Resource for Inquiry and Nature of Science Understanding”. Science & Education 17 (2–3): 147–177. doi:10.1007/s11191-006-9045-7.
  • Ford, M. 2015. “Educational Implications of Choosing “Practice” to Describe Science in the Next Generation Science Standards.” Science Education 99 (6): 1041–1048. doi:10.1002/sce.21188.
  • Freidenfelds, N., L. Cisneros, L. Rodriguez, B-Y. Park, T. Campbell, C. Arnold, C. Chadwick, D. Dickson, M. Dietz, D. Moss, J. Volin, and M. Willig. 2020. Investigating Human Impact on Local Water Resources and Exploring Solutions. The American Biology Teacher 82(9): 619–623.
  • Garet, M. S., A. C. Porter, L. Desimone, B. F. Birman, and K. S. Yoon. 2001. “What Makes Professional Development Effective? Results from a National Sample of Teachers.” American Educational Research Journal 38: 915–945. doi:10.3102/00028312038004915.
  • Gilbert, J. K., and C. J. Boulter. 2000. Developing Models in Science Education. New York: Springer.
  • Gouvea, J., and C. Passmore. 2017. “‘Models Of’ versus ‘Models For’: Toward an Agent-Based Conception of Modeling in the Science Classroom.” Science & Education 26 (1–2): 49–63. doi:10.1007/s11191-017-9884-4.
  • Guy-Gaytán, C., J. S. Gouvea, C. Griesemer, and C. Passmore. 2019. “Tensions between Learning Models and Engaging in Modeling.” Science & Education 28: 843–864. doi:10.1007/s11191-019-00064-y.
  • Hallgren, K. A. 2012. “Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial.” Tutorials in Quantitative Methods for Psychology 8 (1): 23–34. doi:10.20982/tqmp.08.1.p023.
  • Kenyon, L., E. A. Davis, and B. Hug. 2011. “Design Approaches to Support Preservice Teachers in Scientific Modeling.” Journal of Science Teacher Education 22 (1): 1–21. doi:10.1007/s10972-010-9225-9.
  • Khan, S. 2007. “Model-Based Inquiries in Chemistry.” Science Education 91 (6): 877–905. doi:10.1002/sce.20226.
  • Knight‐Bardsley, A. M., and K. L. McNeill. 2016. “Teachers’ Pedagogical Design Capacity for Scientific Argumentation.” Science Education 100 (4): 645–672. doi:10.1002/sce.21222.
  • Ko, M. L. M., and C. Krist. 2019. “Opening up Curricula to Redistribute Epistemic Agency: A Framework for Supporting Science Teaching.” Science Education 1–32. doi:10.1002/sce.21511.
  • Krajcik, J. 2015. “Three-Dimensional Instruction: Using a New Type of Teaching in the Science Classroom.” Science and Children 53 (3): 6–8. doi:10.2505/4/sc15_053_03_6.
  • Lesh, R., and R. Lehrer. 2003. “Models and Modeling Perspectives on the Development of Students and Teachers.” Mathematical Thinking and Learning 5 (2–3): 109–129. doi:10.1080/10986065.2003.9679996.
  • McGraw, K. O., and S. P. Wong. 1996. “Forming Inferences about Some Intraclass Correlation Coefficients.” Psychological Methods 1 (1): 30–46. doi:10.1037/1082-989X.1.1.30.
  • Miles, M. B., A. M. Huberman, and J. Saldaña. 2013. Qualitative Data Analysis: A Methods Sourcebook. Thousand Oaks, CA: Sage.
  • Model Based Biology. 2017. “Model Based Biology: Students Making Sense of Biological Phenomenon.” https://www.modelbasedbiology.com
  • National Academies of Sciences, Engineering, and Medicine (NASEM). 2018. Design, Selection, and Implementation of Instructional Materials for the Next Generation Science Standards (NGSS): Proceedings of a Workshop. Washington, DC: National Academies Press. doi:10.17226/25001.
  • National Research Council. 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies Press.
  • Next Generation Science Standards Lead States. 2013. Next Generation Science Standards: For States, by States. Washington, DC: National Academies Press.
  • Oh, P. S., and S. J. Oh. 2011. “What Teachers of Science Need to Know about Models: An Overview.” International Journal of Science Education 33 (8): 1109–1130. doi:10.1080/09500693.2010.502191.
  • Osborne, J., S. Rafanelli, and P. Kind. 2018. “Toward a More Coherent Model for Science Education than the Crosscutting Concepts of the Next Generation Science Standards: The Affordances of Styles of Reasoning.” Journal of Research in Science Teaching 55 (7): 962–981. doi:10.1002/tea.21460.
  • Passmore, C., J. Stewart, and J. Cartier. 2009. “Model-Based Inquiry and School Science: Creating Connections.” School Science and Mathematics 109 (7): 394–402. doi:10.1111/j.1949-8594.2009.tb17870.x.
  • Passmore, C. M., J. S. Gouvea, and R. Giere. 2014. “Models in Science and in Learning Science: Focusing Scientific Practice on Sense-Making.” In International Handbook of Research in History, Philosophy and Science Teaching, edited by M. R. Matthews, 1171–1202. Dordrecht, Netherlands: Springer.
  • Passmore, C. M., and J. Svoboda. 2012. “Exploring Opportunities for Argumentation in Modelling Classrooms.” International Journal of Science Education 34 (10): 1535–1554. doi:10.1080/09500693.2011.577842.
  • Patton, M. Q. 2002. Qualitative Research & Evaluation Methods. 3rd ed. Saint Paul, MN: Sage.
  • Penuel, W. R., and B. J. Reiser. 2018. “Designing NGSS-Aligned Curriculum Materials.” Committee to Revise America’s Lab Report. Washington, DC: National Academies of Science, Engineering, and Medicine.
  • Penuel, W. R., C. J. Harris, and A. H. DeBarger. 2015. “Implementing the Next Generation Science Standards.” Phi Delta Kappan 96 (6): 45–49. doi:10.1177/0031721715575299.
  • Putnam, R., and H. Borko. 2000. “What Do New Views of Knowledge and Thinking Have to Say about Research on Teacher Learning?” Educational Researcher 29 (1): 4–15. doi:10.3102/0013189X029001004.
  • Ramadas, J. 2009. “Visual and Spatial Modes in Science Learning.” International Journal of Science Education 31 (3): 301–318. doi:10.1080/09500690802595763.
  • Reiser, B. J. 2013. “What Professional Development Strategies are Needed for Successful Implementation of the Next Generation Science Standards.” In Paper written for the Invitational Research Symposium on Science Assessment, Washington DC.
  • Russ, R. S., and L. K. Berland. 2019. “Invented Science: A Framework for Discussing A Persistent Problem of Practice.” Journal of the Learning Sciences 28 (3): 279–301. doi:10.1080/10508406.2018.1517354.
  • Schwarz, C. V., B. J. Reiser, E. A. Davis, L. Kenyon, A. Achér, D. Fortus, Y. Shwartz, B. Hug, and J. Krajcik. 2009. “Developing a Learning Progression for Scientific Modeling: Making Scientific Modeling Accessible and Meaningful for Learners.” Journal of Research in Science Teaching 46 (6): 632–654. doi:10.1002/tea.20311.
  • Schwarz, C. V., and B. Y. White. 2005. “Metamodeling Knowledge: Developing Students’ Understanding of Scientific Modeling.” Cognition and Instruction 23 (2): 165–205. doi:10.1207/s1532690xci2302.
  • Schwarz, C. V., and Y. N. Gwekwerere. 2007. “Using a Guided Inquiry and Modeling Instructional Framework (EIMA) to Support Preservice K‐8 Science Teaching.” Science Education 91 (1): 158–186. doi:10.1002/sce.20177.
  • Smith, S. 2020. “What Does a National Survey Tell Us about Progress toward the Vision of the NGSS?” Journal of Science Teacher Education 31 (6): 601–609. doi:10.1080/1046560X.2020.1786261.
  • Stroupe, D., and M. Windschitl. 2015. “Supporting Ambitious Instruction by Beginning Teachers with Specialized Tools and Practices.” In Newly Hired Teachers of Science: A Better Beginning, edited by J. Luft and S. Dubois, 181–196. The Netherlands: Sense Publishers.
  • Svoboda, J., and C. M. Passmore. 2011. “Models as Epistemic Anchors: A Framework for Model-Based Instruction.” Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Thompson, J., S. Hagenah, H. Kang, D. Stroupe, M. Braaten, C. Colley, and M. Windschitl. 2016. “Rigor and Responsiveness in Classroom Activity.” Teachers College Record 118 (5): 1–58.
  • United Nations Food and Agriculture Organization. 2015. “Global Forest Resources Assessment 2015.” Rome. http://www.fao.org/forest-resources-assessment/en
  • United Nations Food and Agriculture Organization. 2016. “State of the World’s Forests 2016. Forests and Agriculture: Land-use Challenges and Opportunities.” Rome. http://www.fao.org/publications/sofo/en
  • United Nations World Water Assessment Programme. (2014). The United Nations World Water Development Report 2014: Water and Energy. Paris, UNES.
  • United Nations World Water Assessment Programme. 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris: UNES.
  • Van Der Valk, T., J. H. Van Driel, and W. De Vos. 2007. “Common Characteristics of Models in Present-day Scientific Practice.” Research in Science Education 37 (4): 469–488. doi:10.1007/s11165-006-9036-3.
  • Vo, T., C. T. Forbes, L. Zangori, and C. V. Schwarz. 2015. “Fostering Third-Grade Students’ Use of Scientific Models with the Water Cycle: Elementary Teachers’ Conceptions and Practices.” International Journal of Science Education 37 (15): 2411–2432. doi:10.1080/09500693.2015.1080880.
  • Wilson, S. M. 2013. “Professional Development for Science Teachers.” Science 340 (6130): 310–313. doi:10.1126/science.1230725.
  • Windschitl, M., J. Thompson, and M. Braaten. 2008. “Beyond the Scientific Method: Model-Based Inquiry as a New Paradigm of Preference for School Science Investigations.” Science Education 92 (5): 941–967. doi:10.1002/sce.20259.
  • Zangori, L., and C. T. Forbes. 2016. “Development of an Empirically Based Learning Performances Framework for Third‐Grade Students’ Model‐Based Explanations about Plant Processes.” Science Education 100 (6): 961–982. doi:10.1002/sce.21238.
  • Zangori, L., T. Vo, C. T. Forbes, and C. Schwarz. 2017. “Supporting 3rd-Grade Students’ Model-Based Explanations about Groundwater: A Quasi-Experimental Study of A Curricular Intervention”. International Journal of Science Education 39 (11): 1421–1442. doi:10.1080/09500693.2017.1336683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.