1,748
Views
24
CrossRef citations to date
0
Altmetric
Physiology

The influence of 2 weeks of low-volume high-intensity interval training on health outcomes in adolescent boys

, , , &
Pages 757-765 | Accepted 04 Oct 2013, Published online: 10 Jan 2014

References

  • Andersen, L. B., Harro, M., Sardinha, L. B., Froberg, K., Ekelund, U., Brage, S., & Anderssen, S. A. (2006). Physical activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart Study). Lancet, 368, 299–304.
  • Armstrong, N., & Barker, A. R. (2011). Endurance training and elite young athletes. Medicine and Sport Science, 56, 59–83.
  • Babraj, J. A., Vollaard, N. B., Keast, C., Guppy, F. M., Cottrell, G., & Timmons, J. A. (2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders, 9, 3. 
  • Baquet, G., Berthoin, S., Dupont, G., Blondel, N., Fabre, C., & van Praagh, E. (2002). Effects of high intensity intermittent training on peak VO(2) in prepubertal children. International Journal of Sports Medicine, 23, 439–444.
  • Baquet, G., Gamelin, F. X., Mucci, P., Thevenet, D., Van Praagh, E., & Berthoin, S. (2010). Continuous vs. interval aerobic training in 8- to 11-year-old children. Journal of Strength and Conditioning Research, 24, 1381–1388.
  • Baquet, G., van Praagh, E., & Berthoin, S. (2003). Endurance training and aerobic fitness in young people. Sports Medicine, 33, 1127–1143.
  • Barker, A. R., & Armstrong, N. (2011). Exercise testing elite young athletes. Medicine and Sport Science, 56, 106–125.
  • Barker, A. R., Williams, C. A., Jones, A. M., & Armstrong, N. (2011). Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. British Journal of Sports Medicine, 45, 498–503.
  • Batterham, A. M., & Hopkins, W. G. (2006). Making meaningful inferences about magnitudes. International Journal of Sports Physiology and Performance, 1, 50–57.
  • Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology, 80, 876–884.
  • Bogdanis, G. C., Ziagos, V., Anastasiadis, M., & Maridaki, M. (2007). Effects of two different short-term training programs on the physical and technical abilities of adolescent basketball players. Journal of Science and Medicine in Sport, 10, 79–88.
  • Brandou, F., Dumortier, M., Garandeau, P., Mercier, J., & Brun, J. F. (2003). Effects of a two-month rehabilitation program on substrate utilization during exercise in obese adolescents. Diabetes and Metababolism, 29, 20–27.
  • Brandou, F., Savy-Pacaux, A. M., Marie, J., Bauloz, M., Maret-Fleuret, I., Borrocoso, S., … Brun, J. F. (2005). Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet. Diabetes and Metabolism, 31, 327–335.
  • Buchan, D. S., Ollis, S., Young, J. D., Thomas, N. E., Cooper, S. M., Tong, T. K., … Baker, J. S. (2011). The effects of time and intensity of exercise on novel and established markers of CVD in adolescent youth. American Journal of Human Biology, 23, 517–526.
  • Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology, 586, 151–160.
  • Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98, 1985–1990.
  • Burns, S. F., Oo, H. H., & Tran, A. T. (2012). Effect of sprint interval exercise on postexercise metabolism and blood pressure in adolescents. International Journal of Sport, Nutrition, Exercise and Metabolism, 22(1), 47–54.
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.
  • Corpeleijn, E., Saris, W. H., & Blaak, E. E. (2009). Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obesity Reviews, 10, 178–193.
  • Crisp, N. A., Fournier, P. A., Licari, M. K., Braham, R., & Guelfi, K. J. (2012). Adding sprints to continuous exercise at the intensity that maximises fat oxidation: Implications for acute energy balance and enjoyment. Metabolism, 61, 1280–1288.
  • Duncan, G. E., & Howley, E. T. (1998). Metabolic and perceptual responses to short-term cycle training in children. Pediatric Exercise Science, 10, 110–122.
  • Ekelund, U., Anderssen, S. A., Froberg, K., Sardinha, L. B., Andersen, L. B., & Brage, S. (2007). Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: The European youth heart study. Diabetologia, 50, 1832–1840.
  • Frayn, K. N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology, 55, 628–634.
  • Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology, 590, 1077–1084.
  • Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., … Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology, 575, 901–911.
  • Hebestreit, H., Mimura, K., & Bar-Or, O. (1993). Recovery of muscle power after high-intensity short-term exercise: Comparing boys and men. Journal of Applied Physiology, 74, 2875–2880.
  • Hopkins, W. G. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P-value. Sportscience, 11, 16–20.
  • Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41, 3–13.
  • Jacobs, R. A., Flück, D., Bonne, T. C., Bürgi, S., Christensen, P. M., Toigo, M., & Lundby, C. (2013). Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Journal of Applied Physiology, 115, 785–793. doi:10.1152/japplphysiol.00445.2013
  • Janssen, I., & Leblanc, A. G. (2010). Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 7, 40.
  • Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29, 373–386.
  • Kessler, H. S., Sisson, S. B., & Short, K. R. (2012). The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Medicine, 42, 489–509.
  • Kim, J. Y., Hickner, R. C., Cortright, R. L., Dohm, G. L., & Houmard, J. A. (2000). Lipid oxidation is reduced in obese human skeletal muscle. American Journal of Physiology Endocrinology and Metabolism, 279, E1039–E1044.
  • Macpherson, R. E., Hazell, T. J., Olver, T. D., Paterson, D. H., & Lemon, P. W. (2011). Run sprint interval training improves aerobic performance but not maximal cardiac output. Medicine and Science in Sports and Exercise, 43, 115–122.
  • McKay, B. R., Paterson, D. H., & Kowalchuk, J. M. (2009). Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. Journal of Applied Physiology, 107, 128–138.
  • McManus, A. M., Cheng, C. H., Leung, M. P., Yung, T. C., & Macfarlane, D. J. (2005). Improving aerobic power in primary school boys: A comparison of continuous and interval training. International Journal of Sports Medicine, 26, 781–786.
  • McNarry, M. A., Welsman, J. R., & Jones, A. M. (2011). The influence of training and maturity status on girls’ responses to short-term, high-intensity upper- and lower-body exercise. Applied Physiology, Nutrition, and Metabolism, 36, 344–352.
  • Metcalf, B. S., Voss, L. D., Hosking, J., Jeffery, A. N., & Wilkin, T. J. (2008). Physical activity at the government-recommended level and obesity-related health outcomes: A longitudinal study (Early Bird 37). Archives of Disease in Childhood, 93, 772–777.
  • Mirwald, R. L., Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. Medicine and Science in Sports and Exercise, 34, 689–694.
  • Pagliassotti, M. J., Gayles, E. C., & Hill, J. O. (1997). Fat and energy balance. Annals of the New York Academy of Sciences, 827, 431–448.
  • Riddoch, C. J., Mattocks, C., Deere, K., Saunders, J., Kirkby, J., Tilling, K., … Ness, A. R. (2007). Objective measurement of levels and patterns of physical activity. Archives of Disease in Childhood, 92, 963–969.
  • Romijn, J. A., Coyle, E. F., Hibbert, J., & Wolfe, R. R. (1992). Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. American Journal of Physiology Endocrinology and Metabolism, 263, E64–E71.
  • Rowland, T. W., & Boyajian, A. (1995). Aerobic response to endurance exercise training in children. Pediatrics, 96, 654–658.
  • Sherar, L. B., Esliger, D. W., Baxter-Jones, A. D., & Tremblay, M. S. (2007). Age and gender differences in youth physical activity: Does physical maturity matter? Medicine and Science in Sports and Exercise, 39, 830–835.
  • Souissi, H., Chtourou, H., Chaouachi, A., Dogui, M., Chamari, K., Souissi, N., & Amri, M. (2012). The effect of training at a specific time-of-day on the diurnal variations of short-term exercise performances in 10- to 11-year-old boys. Pediatric Exercise Science, 24, 84–99.
  • Sperlich, B., De Marees, M., Koehler, K., Linville, J., Holmberg, H. C., & Mester, J. (2011). Effects of 5 weeks of high-intensity interval training vs. volume training in 14-year-old soccer players. Journal of Strength and Conditioning Research, 25, 1271–1278.
  • Wasserman, K., Hansen, J., Sue, D., Stringer, W., & Whipp, B. (2005). Principles of exercise testing and interpretation including pathophysiology and clinical application (4th ed.). Philadelphia, PA: Lippincott Williams & Wilkins.
  • Welsman, J., Bywater, K., Farr, C., Welford, D., & Armstrong, N. (2005). Reliability of peak VO(2) and maximal cardiac output assessed using thoracic bioimpedance in children. European Journal of Applied Physiology, 94, 228–234.
  • Whyte, L. J., Gill, J. M., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59, 1421–1428.
  • Williams, C. A., Armstrong, N., & Powell, J. (2000). Aerobic responses of prepubertal boys to two modes of training. British Journal of Sports Medicine, 34, 168–173.
  • Zakrzewski, J., & Tolfrey, K. (2011). Exercise protocols to estimate Fatmax and maximal fat oxidation in children. Pediatric Exercise Science, 23, 122–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.