377
Views
5
CrossRef citations to date
0
Altmetric
Sports Medicine

Beneficial effect of enriched air nitrox on bubble formation during scuba diving. An open-water study

, , , , &
Pages 605-612 | Accepted 27 Apr 2017, Published online: 21 May 2017

References

  • Balestra, C., Lafere, P., & Germonpre, P. (2012). Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: Evidence of prolonged nitrogen narcosis? European Journal of Applied Physiology, 112(12), 4063–4068. doi:10.1007/s00421-012-2391-z
  • Bangasser, S. (1987). Decompression sickness in women. In W. Fife (Ed.), Women in diving (pp. 65–79). Bethesda: UHMS.
  • Blatteau, J.-E., Hugon, J., Gempp, E., Castagna, O., Peny, C., & Vallee, N. (2012). Oxygen breathing or recompression during decompression from nitrox dives with a rebreather: Effects on intravascular bubble burden and ramifications for decompression profiles. European Journal of Applied Physiology, 112(6), 2257–2265. doi:10.1007/s00421-011-2195-6
  • Blogg, S. L., Gennser, M., Mollerlokken, A., & Brubakk, A. O. (2014). Ultrasound detection of vascular decompression bubbles: The influence of new technology and considerations on bubble load. Diving and Hyperbaric Medicine, 44(1), 35–44.
  • Boussuges, A., Retali, G., Bodere-Melin, M., Gardette, B., & Carturan, D. (2009). Gender differences in circulating bubble production after SCUBA diving. Clinical Physiology and Functional Imaging, 29(6), 400–405. doi:10.1111/j.1475-097X.2009.00884.x
  • Brebeck, A.-K, Deussen, A, Balestra, C, & Schipke, J. D. (2017). Effects of oxygen-enriched air on cognitive performance during scuba-diving – an open-water study. Research In Sports Medicine, 11(4), 1-12.
  • Brubakk, A. O., Arntzen, A. J., Wienke, B. R., & Koteng, S. (2003). Decompression profile and bubble formation after dives with surface decompression: Experimental support for a dual phase model of decompression. Undersea & Hyperbaric Medicine, 30(3), 181–193.
  • Brubakk, A. O., & Eftedal, O. (2001). Comparison of three different ultrasonic methods for quantification of intravascular gas bubbles. Undersea & Hyperbaric Medicine, 28(3), 131–136.
  • Butler, F. K. J., & Thalmann, E. D. (1986). Central nervous system oxygen toxicity in closed circuit scuba divers II. Undersea Biomedical Research, 13(2), 193–223.
  • Carturan, D., Boussuges, A., Burnet, H., Fondarai, J., Vanuxem, P., & Gardette, B. (1999). Circulating venous bubbles in recreational diving: Relationships with age, weight, maximal oxygen uptake and body fat percentage. International Journal of Sports Medicine, 20(6), 410–414. doi:10.1055/s-2007-971154
  • Castagna, O., Brisswalter, J., Vallee, N., & Blatteau, J.-E. (2011). Endurance exercise immediately before sea diving reduces bubble formation in scuba divers. European Journal of Applied Physiology, 111(6), 1047–1054. doi:10.1007/s00421-010-1723-0
  • Cialoni, D., Pieri, M., Balestra, C., & Marroni, A. (2015). Flying after diving: Should recommendations be reviewed? In-flight echocardiographic study in bubble-prone and bubble-resistant divers. Diving and Hyperbaric Medicine, 45(1), 10–15.
  • Dujic, Z., Obad, A., Palada, I., Ivancev, V., & Valic, Z. (2006). Venous bubble count declines during strenuous exercise after an open sea dive to 30 m. Aviation, Space, and Environmental Medicine, 77(6), 592–596.
  • Dunford, R. G., Vann, R. D., Gerth, W. A., Pieper, C. F., Huggins, K., Wacholtz, C., & Bennett, P. B. (2002). The incidence of venous gas emboli in recreational diving. Undersea & Hyperbaric Medicine, 29(4), 247–259.
  • Eckenhoff, R. G., & Knight, D. R. (1984). Cardiac arrhythmias and heart rate changes in prolonged hyperbaric air exposures. Undersea Biomedical Research, 11(4), 355–367.
  • Eckenhoff, R. G., Olstad, C. S., & Carrod, G. (1990). Human dose-response relationship for decompression and endogenous bubble formation. Journal of Applied Physiology (Bethesda, Md. : 1985), 69(3), 914–918.
  • Erdem, I., Yildiz, S., Uzun, G., Sonmez, G., Senol, M. G., Mutluoglu, M., … Oner, B. (2009). Cerebral white-matter lesions in asymptomatic military divers. Aviation, Space, and Environmental Medicine, 80(1), 2–4. doi:10.3357/ASEM.2234.2009
  • Fock, A., Harris, R., & Slade, M. (2013). Oxygen exposure and toxicity in recreational technical divers. Diving and Hyperbaric Medicine, 43(2), 67–71.
  • Gear, R. W., Miaskowski, C., Gordon, N. C., Paul, S. M., Heller, P. H., & Levine, J. D. (1996). Kappa-opioids produce significantly greater analgesia in women than in men. Nature Medicine, 2(11), 1248–1250. doi:10.1038/nm1196-1248
  • Germonpre, P. (2014). Presentation presented at the 40. Meeting of the EUBS, Wiesbaden.
  • Germonpre, P., Papadopoulou, V., Hemelryck, W., Obeid, G., Lafere, P., Eckersley, R. J., … Balestra, C. (2014). The use of portable 2D echocardiography and “frame-based” bubble counting as a tool to evaluate diving decompression stress. Diving and Hyperbaric Medicine, 44(1), 5–13.
  • Gutvik, C. R., & Brubakk, A. O. (2009). A dynamic two-phase model for vascular bubble formation during decompression of divers. IEEE Transactions on Bio-Medical Engineering, 56(3), 884–889. doi:10.1109/TBME.2008.2005962
  • Hagberg, M., & Ornhagen, H. (2003). Incidence and risk factors for symptoms of decompression sickness among male and female dive masters and instructors–a retrospective cohort study. Undersea & Hyperbaric Medicine, 30(2), 93–102.
  • Jankowski, L. W., Tikuisis, P., & Nishi, R. Y. (2004). Exercise effects during diving and decompression on postdive venous gas emboli. Aviation, Space, and Environmental Medicine, 75(6), 489–495.
  • Kayar, S. R. (2008). On beginning a second century of decompression sickness research: Where are we and what comes next? Aviation, Space, and Environmental Medicine, 79(11), 1071–1072. doi:10.3357/ASEM.2416.2008
  • Kazdin, A.E. (2006). Arbitrary metrics: implications for identifying evidence-based treatments. The American Psychologist, 61(1), 62-71.
  • Levett, D. Z. H., & Millar, I. L. (2008). Bubble trouble: A review of diving physiology and disease. Postgraduate Medical Journal, 84(997), 571–578. doi:10.1136/pgmj.2008.068320
  • Marabotti, C., Scalzini, A., & Chiesa, F. (2013). Increase of pulmonary arterial pressure in subjects with venous gas emboli after uncomplicated recreational SCUBA diving. Respiratory Medicine, 107(4), 596–600. doi:10.1016/j.rmed.2013.01.002
  • Marinovic, J., Ljubkovic, M., Breskovic, T., Gunjaca, G., Obad, A., Modun, D., … Dujic, Z. (2012). Effects of successive air and nitrox dives on human vascular function. European Journal of Applied Physiology, 112(6), 2131–2137. doi:10.1007/s00421-011-2187-6
  • Mollerlokken, A., Blogg, S. L., Doolette, D. J., Nishi, R. Y., & Pollock, N. W. (2016). Consensus guidelines for the use of ultrasound for diving research. Diving and Hyperbaric Medicine : The Journal of the South Pacific Underwater Medicine Society, 46(1), 26–32.
  • Mollerlokken, A., Breskovic, T., Palada, I., Valic, Z., Dujic, Z., & Brubakk, A. O. (2011). Observation of increased venous gas emboli after wet dives compared to dry dives. Diving and Hyperbaric Medicine, 41(3), 124–128.
  • Pollock, N. W. (2007). Use of ultrasound in decompression research. SPUMS J. Retrieved from http://archive.rubicon-foundation.org/9424
  • Pontier, J.-M., Buzzacott, P., Nastorg, J., Dinh-Xuan, A. T., & Lambrechts, K. (2014). Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans? Nitric Oxide : Biology and Chemistry, 39, 29–34. doi:10.1016/j.niox.2014.04.005
  • Robinson, T. J. (1988). Decompression sickness in women divers. Undersea Biomedical Research, 15(1), 65–66.
  • Sawatzky, K. D., & Nishi, R. Y. (1991). Assessment of inter-rater agreement on the grading of intravascular bubble signals. Undersea Biomedical Research, 18(5–6), 373–396.
  • Schellart, N. A. M., Vellinga, T. P. V. R., van Dijk, F. J., & Sterk, W. (2012). Doppler bubble grades after diving and relevance of body fat. Aviation, Space, and Environmental Medicine, 83(10), 951–957. doi:10.3357/ASEM.3189.2012
  • Schwerzmann, M., Seiler, C., Lipp, E., Guzman, R., Lovblad, K. O., Kraus, M., & Kucher, N. (2001). Relation between directly detected patent foramen ovale and ischemic brain lesions in sport divers. Annals of Internal Medicine, 134(1), 21–24. doi:10.7326/0003-4819-134-1-200101020-00009
  • Shykoff, B. E. (2008). Pulmonary effects of submerged oxygen breathing in resting divers: Repeated exposures to 140 kPa. Undersea & Hyperbaric Medicine, 35(2), 131–143.
  • Shykoff, B. E. (2014). Cumulative effects of repeated exposure to pO2 = 200 kPa (2 atm). Undersea & Hyperbaric Medicine, 41(4), 291–300.
  • Skogstad, M., Thorsen, E., Haldorsen, T., & Kjuus, H. (2002). Lung function over six years among professional divers. Occupational and Environmental Medicine, 59(9), 629–633. doi:10.1136/oem.59.9.629
  • Smerz, R. W. (2014). The relationship of decongestant use and risk of decompression sickness; a case-control study of Hawaiian scuba divers. Hawai’i Journal of Medicine & Public Health : A Journal of Asia Pacific Medicine & Public Health, 73(2), 61–65.
  • Souday, V., Koning, N. J., Perez, B., Grelon, F., Mercat, A., Boer, C., … Asfar, P. (2016). Enriched air nitrox breathing reduces venous gas bubbles after simulated SCUBA diving: A double-blind cross-over randomized trial. Plos One, 11(5), e0154761. doi:10.1371/journal.pone.0154761
  • Spencer, M. P. (1976). Decompression limits for compressed air determined by ultrasonically detected blood bubbles. Journal of Applied Physiology, 40(2), 229–235.
  • Spencer, M. P., & Clarke, H. F. (1972). Precordial monitoring of pulmonary gas embolism and decompression bubbles. Aerospace Medicine, 43(7), 762–767.
  • Stat Trek, (2017). Teach yourself statistics. Retrieved from stattrek.com
  • St Leger Dowse, M., Bryson, P., Gunby, A., & Fife, W. (2002). Comparative data from 2250 male and female sports divers: Diving patterns and decompression sickness. Aviation, Space, and Environmental Medicine, 73(8), 743–749.
  • Thom, S. R., Bennett, M., Banham, N. D., Chin, W., Blake, D. F., Rosen, A., … Dujic, Z. (2015). Association of microparticles and neutrophil activation with decompression sickness. Journal of Applied Physiology, 119(5), 427–434. doi:10.1152/japplphysiol.00380.2015
  • Thom, S. R., Milovanova, T. N., Bogush, M., Bhopale, V. M., Yang, M., Bushmann, K., … Dujic, Z. (2012). Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving. Journal of Applied Physiology, 112(8), 1268–1278. doi:10.1152/japplphysiol.01305.2011
  • Thom, S. R., Milovanova, T. N., Bogush, M., Yang, M., Bhopale, V. M., Pollock, N. W., … Dujic, Z. (2013). Bubbles, microparticles, and neutrophil activation: Changes with exercise level and breathing gas during open-water SCUBA diving. Journal of Applied Physiology, 114(10), 1396–1405. doi:10.1152/japplphysiol.00106.2013
  • Tufan, K., Ademoglu, A., Kurtaran, E., Yildiz, G., Aydin, S., & Egi, S. M. (2006). Automatic detection of bubbles in the subclavian vein using Doppler ultrasound signals. Aviation, Space, and Environmental Medicine, 77(9), 957–962.
  • Vallee, N., Gaillard, S., Peinnequin, A., Risso, -J.-J., & Blatteau, J.-E. (2013). Evidence of cell damages caused by circulating bubbles: High level of free mitochondrial DNA in plasma of rats. Journal of Applied Physiology (Bethesda, Md. : 1985), 115(10), 1526–1532. doi:10.1152/japplphysiol.00025.2013
  • Vince, R. V., McNaughton, L. R., Taylor, L., Midgley, A. W., Laden, G., & Madden, L. A. (2009). Release of VCAM-1 associated endothelial microparticles following simulated SCUBA dives. European Journal of Applied Physiology, 105(4), 507–513. doi:10.1007/s00421-008-0927-z
  • Vivian, J. (2016, February 9). The Art of Diving. Retrieved from http://www.subex.org/index.php/en/diving/subex-air28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.