383
Views
3
CrossRef citations to date
0
Altmetric
Sports Performance

The effects of 4 weeks normobaric hypoxia training on microvascular responses in the forearm flexor

, , , , , , & show all
Pages 1235-1241 | Accepted 23 Nov 2018, Published online: 17 Dec 2018

References

  • Bailey, D. M., & Davies, B. (1997). Physiological implications of altitude training for endurance performance at sea level: A review. British Journal of Sports Medicine, 31(3), 183–190.
  • Baron, A. D., Laakso, M., Brechtel, G., & Edelman, S. V. (1991). Mechanism of insulin resistance in insulin-dependent diabetes mellitus: A major role for reduced skeletal muscle blood flow. The Journal of Clinical Endocrinology & Metabolism, 73(3), 637–643.
  • Beekvelt, V., Van Engelen, B. G. M., Wevers, R. A., & Colier, W. N. J. M. (2002). In vivo quantitative near-infrared spectroscopy in skeletal muscle during incremental isometric handgrip exercise. Clinical Physiology and Functional Imaging, 22(3), 210–217.
  • Casey, D. P., & Joyner, M. J. (2011). Local control of skeletal muscle blood flow during exercise: Influence of available oxygen. Journal of Applied Physiology, 111(6), 1527–1538.
  • Clark, M. G., Wallis, M. G., Barrett, E. J., Vincent, M. A., Richards, S. M., Clerk, L. H., & Rattigan, S. (2003). Blood flow and muscle metabolism: A focus on insulin action. American Journal of Physiology Endocrinology and Metabolism, 284(2), E241–E258.
  • De Blasi, R. A., Almenrader, N., Aurisicchio, P., & Ferrari, M. (1997). Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy. Journal of Biomedical Optics, 2(2), 171–175.
  • DeLorey, D. S., Shaw, C. N., Shoemaker, J. K., Kowalchuk, J. M., & Paterson, D. H. (2004). The effect of hypoxia on pulmonary O2 uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise. Experimental Physiology, 89(3), 293–302.
  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., & Wyatt, J. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 33(12), 1433.
  • Dudley, G. A., Abraham, W. M., & Terjung, R. L. (1982). Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. Journal of Applied Physiology, 53(4), 844–850.
  • Dufour, S. P., Ponsot, E., Zoll, J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., … Billat, V. (2006). Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. Journal of Applied Physiology, 100(4), 1238–1248.
  • Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Fallon, P., Tyszczuk, L., … Delpy, D. T. (1996). Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatric Research, 39(5), 889–894.
  • Ferrari, M., Wei, Q., Carraresi, L., De Blasi, R. A., & Zaccanti, G. (1992). Time-resolved spectroscopy of the human forearm. Journal of Photochemistry and Photobiology B: Biology, 16(2), 141–153.
  • Fryer, S., Stoner, L., Lucero, A., Witter, T., Scarrott, C., Dickson, T., … Draper, N. (2015). Haemodynamic kinetics and intermittent finger flexor performance in rock climbers. International Journal of Sports Medicine, 36(2), 137–142.
  • Gore, C. J., Clark, S. A., & Saunders, P. U. (2007). Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Medicine & Science in Sports & Exercise, 39(9), 1600–1609.
  • Hamlin, M., Marshall, H., Hellemans, J., Ainslie, P., & Anglem, N. (2010). Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scandinavian Journal of Medicine & Science in Sports, 20(4), 651–661.
  • Hillman, E. M., Hebden, J. C., Schweiger, M., Dehghani, H., Schmidt, F. E., Delpy, D. T., & Arridge, S. R. (2001). Time resolved optical tomography of the human forearm. Physics in Medicine and Biology, 46(4), 1117.
  • Holten, M. K., Zacho, M., Gaster, M., Juel, C., Wojtaszewski, J. F., & Dela, F. (2004). Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes, 53(2), 294–305.
  • Hughson, R. L., & Kowalchuk, J. M. (1995). Kinetics of oxygen uptake for submaximal exercise in hyperoxia, normoxia, and hypoxia. Canadian Journal of Applied Physiology, 20(2), 198–210.
  • Joyner, M. J., & Casey, D. P. (2014). Muscle blood flow, hypoxia, and hypoperfusion. Journal of Applied Physiology, 116(7), 852–857.
  • Katayama, K., Matsuo, H., Ishida, K., Mori, S., & Miyamura, M. (2003). Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Altitude Medicine & Biology, 4(3), 291–304.
  • Katayama, K., Sato, Y., Morotome, Y., Shima, N., Ishida, K., Mori, S., & Miyamura, M. (2001). Intermittent hypoxia increases ventilation and Sa O2 during hypoxic exercise and hypoxic chemosensitivity. Journal of Applied Physiology, 90(4), 1431–1440.
  • Lucero, A., Gifty, A., Lawrence, W., Neway, B., Credeur, D. P., Faulkner, J., … Stoner, L. (2017). Reliability of muscle blood flow and oxygen consmption during exercise using near-infrared spectroscopy. Experimental Physiology, 103(1), 90–100.
  • MacDonald, M., Tarnopolsky, M., & Hughson, R. (2000). Effect of hyperoxia and hypoxia on leg blood flow and pulmonary and leg oxygen uptake at the onset of kicking execise. Canadian Journal of Physiology and Pharmocology, 78, 67–74.
  • Marshall, H. C., Hamlin, M. J., Hellemans, J., Murrell, C., Beattie, N., Hellemans, I., … Ainslie, P. N. (2008). Effects of intermittent hypoxia on SaO2, cerebral and muscle oxygenation during maximal exercise in athletes with exercise-induced hypoxemia. European Journal of Applied Physiology, 104(2), 383–393.
  • Meeuwsen, T., Hendriksen, I. J., & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology, 84(4), 283–290.
  • Neubauer, J. A. (2001). Invited review: Physiological and pathophysiological responses to intermittent hypoxia. Journal of Applied Physiology, 90(4), 1593–1599.
  • Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. Journal of Experimental Biology, 204(18), 3225–3234.
  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (Vol. 1). London: Sage.
  • Roach, R. C., Koskolou, M. D., Calbet, J. A., & Saltin, B. (1999). Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. American Journal of Physiology-Heart and Circulatory Physiology, 276(2), H438–H445.
  • Rowell, B., Saltin, B., Kiens, B., & Christensen, N. (1986). Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? American Journal of Physiology Heart and Circulatory Physiology, 251(5), H1038–H1044.
  • Ryan, T. E., Southern, W. M., Brizendine, J. T., & McCully, K. K. (2013). Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Medicine and Science in Sports and Exercise, 45(12). doi:10.1249/MSS.0b013e31829a726a
  • Springer, C., Barstow, T. J., Wasserman, K., & Cooper, D. M. (1991). Oxygen uptake and heart rate responses during hypoxic exercise in children and adults. Medicine and Science in Sports and Exercise, 23(1), 71–79.
  • Stone, K. J., Fryer, S. M., Ryan, T., & Stoner, L. (2016). The validity and reliability of continuous-wave near-infrared spectroscopy for the assessment of leg blood volume during an orthostatic challenge. Atherosclerosis, 251, 234–239.
  • Terrados, N., Jansson, E., Sylven, C., & Kaijser, L. (1990). Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? Journal of Applied Physiology, 68(6), 2369–2372.
  • Van Beekvelt, M., Borghuis, M., Van Engelen, B., Wevers, R., & Colier, W. (2001). Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clinical Science, 101(1), 21–28.
  • Van Beekvelt, M. C., Colier, W., Wevers, R. A., & Van Engelen, B. G. (2001). Performance of near-infrared spectroscopy in measuring local O~ 2 consumption and blood flow in skeletal muscle. Journal of Applied Physiology, 90(2), 511–519.
  • Vierordt, H. (1906). Anatomische, physiologische und physikalische Daten und Tabellen zum Gebrauche für Mediziner. Berlin: Fischer.
  • Vogt, M., & Hoppeler, H. (2010). Is hypoxia training good for muscles and exercise performance? Progress in Cardiovascular Diseases, 52(6), 525–533.
  • Vogt, M., Puntschart, A., Geiser, J., Zuleger, C., Billeter, R., & Hoppeler, H. (2001). Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91(1), 173–182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.