411
Views
0
CrossRef citations to date
0
Altmetric
Physiology and Nutrition

Taking the plunge: When is best for hot water immersion to complement exercise in heat and hypoxia

ORCID Icon, , , , , & show all
Pages 2055-2061 | Accepted 29 Sep 2022, Published online: 20 Oct 2022

References

  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012
  • Brazaitis, M., & Skurvydas, A. (2010). Heat acclimation does not reduce the impact of hyperthermia on central fatigue. European Journal of Applied Physiology, 109(4), 771–778. https://doi.org/10.1007/s00421-010-1429-3
  • Casa, D. J. (1999). Exercise in the heat. I. Fundamentals of thermal physiology, performance implications, and dehydration. Journal of Athletic Training, 34(3), 246. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1322918/
  • Christian, R. J., Bishop, D., GIRARD, O., & Billaut, F. (2014). The role of sense of effort on self-selected cycling power output. Frontiers in Physiology, 5, 115. https://doi.org/10.3389/fphys.2014.00115
  • Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., & Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: Relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(1), R264–R272. https://doi.org/10.1152/ajpregu.00875.2007
  • Dennis, M. C., Goods, P. S., Binnie, M. J., Girard, O., Wallman, K. E., Dawson, B., Billaut, F., & Peeling, P. (2021). Increased air temperature during repeated-sprint training in hypoxia amplifies muscle oxygenation flux without decreasing cycling performance. European Journal of Sport Science, 1–11. https://doi.org/10.1080/17461391.2021.2003868
  • Dennis, M. C., Goods, P. S., Binnie, M. J., Girard, O., Wallman, K. E., Dawson, B. T., & Peeling, P. (2021). Adding heat to repeated-sprint training in hypoxia does not affect cycling performance. International Journal of Sports Physiology and Performance, 16(11), 1640–1648. https://doi.org/10.1123/ijspp.2020-0676
  • Drust, B., Rasmussen, P., Mohr, M., Nielsen, B., & Nybo, L. (2005). Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiologica Scandinavica, 183(2), 181–190. https://doi.org/10.1111/j.1365-201X.2004.01390.x
  • Garrett, A. T., Goosens, N. G., Rehrer, N. G., Patterson, M. J., & Cotter, J. D. (2009). Induction and decay of short-term heat acclimation. European Journal of Applied Physiology, 107(6), 659. https://doi.org/10.1007/s00421-009-1182-7
  • Gibson, O. R., Mee, J. A., Tuttle, J. A., Taylor, L., Watt, P. W., & Maxwell, N. S. (2015). Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales. Journal of Thermal Biology, 49-50, 55–65. https://doi.org/10.1016/j.jtherbio.2015.02.005
  • Girard, O., Brocherie, F., & Bishop, D. (2015). Sprint performance under heat stress: A review. Scandinavian Journal of Medicine & Science in Sports, 25(S1), 79–89. https://doi.org/10.1111/sms.12437
  • Girard, O., & Racinais, S. (2014). Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. European Journal of Applied Physiology, 114(7), 1521–1532. https://doi.org/10.1007/s00421-014-2883-0
  • Gregson, W., Drust, B., Batterham, A., & Cable, N. (2002). The effects of pre-warming on the metabolic and thermoregulatory responses to prolonged submaximal exercise in moderate ambient temperatures. European Journal of Applied Physiology, 86(6), 526–533. https://doi.org/10.1007/s00421-002-0580-x
  • Heathcote, S. L., Hassmén, P., Zhou, S., & Stevens, C. J. (2018). Passive heating: Reviewing practical heat acclimation strategies for endurance athletes. Frontiers in Physiology, 9, 1851. https://doi.org/10.3389/fphys.2018.01851
  • Hoppeler, H., Vogt, M., Weibel, E. R., & Flück, M. (2003). Response of skeletal muscle mitochondria to hypoxia. Experimental Physiology, 88(1), 109–119. https://doi.org/10.1113/eph8802513
  • McIntyre, R. D., Zurawlew, M. J., Oliver, S. J., Cox, A. T., Mee, J. A., & Walsh, N. P. (2021). A comparison of heat acclimation by post-exercise hot water immersion and exercise in the heat. Journal of Science and Medicine in Sport, 24(8), 729–734. https://doi.org/10.1016/j.jsams.2021.05.008
  • McKay, A. K., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining Training and Performance Caliber: A Participant Classification Framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://doi.org/10.1123/ijspp.2021-0451
  • Mee, J. A., Peters, S., Doust, J. H., & Maxwell, N. S. (2018). Sauna exposure immediately prior to short-term heat acclimation accelerates phenotypic adaptation in females. Journal of Science and Medicine in Sport, 21(2), 190–195. https://doi.org/10.1016/j.jsams.2017.06.024
  • Nybo, L., Rasmussen, P., & Sawka, M. N. (2014). Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Comprehensive Physiology, 4(2), 657–689. https://pubmed.ncbi.nlm.nih.gov/24715563/
  • Pandolf, K., Burse, R., & Goldman, R. (1977). Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics, 20(4), 399–408. https://doi.org/10.1080/00140137708931642
  • Pitsiladis, Y., Strachan, A., Davidson, I., & Maughan, R. J. (2002). Hyperprolactinaemia during prolonged exercise in the heat: Evidence for a centrally mediated component of fatigue in trained cyclists. Experimental Physiology, 87(2), 215–226. https://doi.org/10.1113/eph8702342
  • Racinais, S., Alonso, J.-M., Coutts, A. J., Flouris, A. D., Girard, O., González-Alonso, J., Hausswirth, C., Jay, O., Lee, J. K. W., Mitchell, N., Nassis, G. P., Nybo, L., Pluim, B. M., Roelands, B., Sawka, M. N., Wingo, J. E., & Périard, J. D. (2015). Consensus recommendations on training and competing in the heat. Scandinavian Journal of Medicine & Science in Sports, 25(S1), 6–19. https://doi.org/10.1111/sms.12467
  • Ramanathan, N. (1964). A new weighting system for mean surface temperature of the human body. Journal of Applied Physiology, 19(3), 531–533. https://doi.org/10.1152/jappl.1964.19.3.531
  • Sawka, M. N., Leon, L. R., Montain, S. J., & Sonna, L. A. (2011). Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Comprehensive Physiology. https://pubmed.ncbi.nlm.nih.gov/23733692/
  • Scoon, G. S., Hopkins, W. G., Mayhew, S., & Cotter, J. D. (2007). Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. Journal of Science and Medicine in Sport, 10(4), 259–262. https://doi.org/10.1016/j.jsams.2006.06.009
  • Shapiro, Y., Pandolf, K. B., & Goldman, R. F. (1982). Predicting sweat loss response to exercise, environment and clothing. European Journal of Applied Physiology and Occupational Physiology, 48(1), 83–96. https://doi.org/10.1007/BF00421168
  • Spencer, M., Dawson, B., Goodman, C., Dascombe, B., & Bishop, D. (2008). Performance and metabolism in repeated sprint exercise: Effect of recovery intensity. European Journal of Applied Physiology, 103(5), 545–552. https://doi.org/10.1007/s00421-008-0749-z
  • Team, R. C., R Core Team. (2020). R: A language and environment for statistical computing. Foundation for Statistical Computing. http://www.r-project.org/index.html
  • Young, A. J., Sawka, M. N., Epstein, Y., DeCristofano, B., & Pandolf, K. B. (1987). Cooling different body surfaces during upper and lower body exercise. Journal of Applied Physiology, 63(3), 1218–1223. https://doi.org/10.1152/jappl.1987.63.3.1218
  • Zurawlew, M. J., Mee, J. A., & Walsh, N. P. (2018). Post-exercise hot water immersion elicits heat acclimation adaptations in endurance trained and recreationally active individuals. Frontiers in Physiology, 9, 1824. https://doi.org/10.3389/fphys.2018.01824
  • Zurawlew, M. J., Mee, J. A., & Walsh, N. P. (2019). Post-exercise hot water immersion elicits heat acclimation adaptations that are retained for at least two weeks. Frontiers in Physiology, 10, 1080. https://doi.org/10.3389/fphys.2019.01080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.