2,148
Views
1
CrossRef citations to date
0
Altmetric
Sports Medicine and Biomechanics

Criterion validity of neural networks to assess lower limb motion during cycling

ORCID Icon, , , &
Pages 36-44 | Received 12 Sep 2022, Accepted 15 Mar 2023, Published online: 28 Mar 2023

References

  • Bailey, M. P., Maillardet, F. J., & Messenger, N. (2003). Kinematics of cycling in relation to anterior knee pain and patellar tendinitis. Journal of Sports Sciences, 21(8), 649–657. https://doi.org/10.1080/0264041031000102015
  • Bini, R. R., Dagnese, F., Rocha, E., Silveira, M. C., Carpes, F. P., & Mota, C. B. (2016). Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling. European Journal of Sport Science, 16(5), 553–559. https://doi.org/10.1080/17461391.2015.1135984
  • Bini, R. R., & Diefenthaeler, F. (2010). Kinetics and kinematics analysis of incremental cycling to exhaustion. Sports Biomechanics, 9(4), 223–235. https://doi.org/10.1080/14763141.2010.540672
  • Bini, R. R., Diefenthaeler, F., & Mota, C. B. (2010). Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 20(1), 102–107. https://doi.org/10.1016/j.jelekin.2008.10.003
  • Bini, R. R., & Hume, P. A. (2014). Effects of saddle height on knee forces of recreational cyclists with and without knee pain. International SportMed Journal, 15(2), 188–199. https://www.researchgate.net/publication/263587378_EFFECTS_OF_SADDLE_HEIGHT_ON_KNEE_FORCES_OF_RECREATIONAL_CYCLISTS_WITH_AND_WITHOUT_KNEE_PAIN
  • Bini, R. R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463–476. https://doi.org/10.2165/11588740-000000000-00000
  • Bini, R. R., Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44–52. https://doi.org/10.1080/17461391.2012.725105
  • Bini, R., & Priego-Quesada, J. (in press). Methods to determine saddle height in cycling and implications of changes in saddle height in performance and injury risk: A systematic review. Journal of Sports Sciences. https://doi.org/10.1080/02640414.2021.1994727
  • Bini, R. R., Rossato, M., Diefenthaeler, F., Carpes, F. P., Dos Reis, D. C., & Moro, A. R. P. (2010). Pedaling cadence effects on joint mechanical work during cycling. Isokinetics and Exercise Science, 18(1), 7–13. https://doi.org/10.3233/IES-2010-0361
  • Bini, R. R., Senger, D., Lanferdini, F. J., & Lopes, A. L. (2012). Joint kinematics assessment during cycling incremental test to exhaustion. Isokinetics and Exercise Science, 20(1), 99–105. https://doi.org/10.3233/IES-2012-0447
  • Bini, R. R., Serrancoli, G., Santiago, P. R. P., Pinto, A., & Moura, F. (2022). Validity of neural networks to determine body position on the bicycle. Research Quarterly for Exercise and Sport, 1–8. https://doi.org/10.1080/02701367.2022.2070103
  • Burnie, L., Barratt, P., Davids, K., Worsfold, P., & Wheat, J. (2020). Biomechanical measures of short-term maximal cycling on an ergometer: A test-retest study. Sports Biomechanics, 1–19. https://doi.org/10.1080/14763141.2020.1773916
  • Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2021). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172–186. https://doi.org/10.1109/TPAMI.2019.2929257
  • Catelli, D. S., Wesseling, M., Jonkers, I., & Lamontagne, M. (2019). A musculoskeletal model customized for squatting task. Computer Methods in Biomechanics and Biomedical Engineering, 22(1), 21–24. https://doi.org/10.1080/10255842.2018.1523396
  • D’antonio, E., Taborri, J., Mileti, I., Rossi, S., & Patané, F. (2021). Validation of a 3D markerless system for gait analysis based on openpose and two RGB webcams. IEEE Sensors Journal, 21(15), 17064–17075. https://doi.org/10.1109/JSEN.2021.3081188
  • Drazan, J. F., Phillips, W. T., Seethapathi, N., Hullfish, T. J., & Baxter, J. R. (2021). Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. Journal of Biomechanics, 125, 110547. https://doi.org/10.1016/j.jbiomech.2021.110547
  • Faul, F., Erdfelder, E., Lang, A. -G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
  • Ferrer-Roca, V., Bescós, R., Roig, A., Galilea, P., Valero, O., & García-López, J. (2014). Acute Effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics. Journal of Strength and Conditioning Research. 28(3), 784–791. https://doi.org/10.1519/JSC.0b013e3182a1f1a9
  • Fonda, B., Sarabon, N., & Li, F. -X. (2014). Validity and reliability of different kinematics methods used for bike fitting. Journal of Sports Sciences, 32(10), 940–946. https://doi.org/10.1080/02640414.2013.868919
  • García-López, J., & Del Blanco, P. A. (2017). Kinematic analysis of bicycle pedalling using 2d and 3d motion capture systems. ISBS Proceedings Archive, 35(1), 125.
  • Holliday, W., & Swart, J. (2021). A dynamic approach to cycling biomechanics. Physical Medicine and Rehabilitation Clinics of North America, 33(1), 1–13. https://doi.org/10.1016/j.pmr.2021.08.001
  • Holliday, W., Theo, R., Fisher, J., & Swart, J. (2019). Cycling: Joint kinematics and muscle activity during differing intensities. Sports Biomechanics, 1–15. https://doi.org/10.1080/14763141.2019.1640279
  • Johnson, C. D., Outerleys, J., & Davis, I. S. (2022). Agreement between sagittal foot and tibia angles during running derived from an open-source markerless motion capture platform and manual digitization. Journal of Applied Biomechanics, 38(2), 1–6. https://doi.org/10.1123/jab.2021-0323
  • Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012
  • Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. Paper presented at the Computer Vision – ECCV 2014,
  • Millour, G., Duc, S., Puel, F., & Bertucci, W. (2019). Comparison of static and dynamic methods based on knee kinematics to determineoptimal saddle height in cycling. Acta of Bioengineering and Biomechanics / Wroclaw University of Technology, 21(4), 93–99. https://doi.org/10.37190/ABB-01428-2019-02
  • Needham, L., Evans, M., Cosker, D. P., Wade, L., McGuigan, P. M., Bilzon, J. L., & Colyer, S. L. (2021). The accuracy of several pose estimation methods for 3D joint centre localisation. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00212-x
  • Ong, A., Harris, I. S., & Hamill, J. (2017). The efficacy of a video-based marker-less tracking system for gait analysis. Computer Methods in Biomechanics and Biomedical Engineering, 20(10), 1089–1095. https://doi.org/10.1080/10255842.2017.1334768
  • Ota, M., Tateuchi, H., Hashiguchi, T., & Ichihashi, N. (2021). Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Gait & Posture, 85, 290–297. https://doi.org/10.1016/j.gaitpost.2021.02.006
  • Ota, M., Tateuchi, H., Hashiguchi, T., Kato, T., Ogino, Y., Yamagata, M., & Ichihashi, N. (2020). Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait & Posture, 80, 62–67. https://doi.org/10.1016/j.gaitpost.2020.05.027
  • Pagnon, D., Domalain, M., & Reveret, L. (2022). Pose2sim: An End-to-end workflow for 3D markerless sports kinematics—Part 2: Accuracy. Sensors, 22(7), 2712. Retrieved from, https://www.mdpi.com/1424-8220/22/7/2712
  • Pataky, T. C., Robinson, M. A., & Vanrenterghem, J. (2013). Vector field statistical analysis of kinematic and force trajectories. Journal of Biomechanics, 46(14), 2394–2401. https://doi.org/10.1016/j.jbiomech.2013.07.031
  • Robinson, M. A., Vanrenterghem, J., & Pataky, T. C. (2021). Sample size estimation for biomechanical waveforms: Current practice, recommendations and a comparison to discrete power analysis. Journal of Biomechanics, 122, 110451. https://doi.org/10.1016/j.jbiomech.2021.110451
  • Sayers, M. G. L., & Tweddle, A. L. (2012). Thorax and pelvis kinematics change during sustained cycling. International Journal of Sports Medicine, 33(4), 314–319. https://doi.org/10.1055/s-0031-1291363
  • Serrancolí, G., Bogatikov, P., Huix, J. P., Barberà, A. F., Egea, A. J. S., Ribé, J. T., Susín, A. … Susín, A. (2020). Marker-less monitoring protocol to analyze biomechanical joint metrics during pedaling. IEEE Access, 8, 122782–122790. https://doi.org/10.1109/ACCESS.2020.3006423
  • Suriyaamarit, D., & Boonyong, S. (2018). Reliability and minimal detectable change of sit-to-stand kinematics and kinetics in typical children. Human Movement, 19(3), 48–54. https://doi.org/10.5114/hm.2018.76079
  • Swart, J., & Holliday, W. (2019). Cycling biomechanics optimization—the (R) evolution of bicycle fitting. Current Sports Medicine Reports, 18(12), Retrieved from https://journals.lww.com/acsm-csmr/Fulltext/2019/12000/Cycling_Biomechanics_Optimization_the__R_.13.aspx.
  • Szczerbik, E., & Kalinowska, M. (2011). The influence of knee marker placement error on evaluation of gait kinematic parameters. Acta of Bioengineering and Biomechanics / Wroclaw University of Technology, 13(3), 43–46.
  • Umberger, B. R., & Martin, P. E. (2001). Testing the planar assumption during ergometer cycling. Journal of Applied Biomechanics, 17(1), 55–62. https://doi.org/10.1123/jab.17.1.55
  • Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose estimation and tracking. Paper presented at the Computer Vision – ECCV 2018,