2,206
Views
0
CrossRef citations to date
0
Altmetric
Physical Activity, Health and Exercise

The influence of reliability and variability of objectively measured physical activity on associations with lower body muscle strength in young children

ORCID Icon &
Pages 190-199 | Received 21 Oct 2022, Accepted 11 Apr 2023, Published online: 20 Apr 2023

References

  • Aadland, E., Andersen, L. B., Anderssen, S. A., Resaland, G. K., & Kvalheim, O. M. (2019). Accelerometer epoch setting is decisive for associations between physical activity and metabolic health in children. Journal of Sports Sciences, 38(3), 1–8. https://doi.org/10.1080/02640414.2019.1693320
  • Aadland, E., Andersen, L. B., Resaland, G. K., & Kvalheim, O. M. (2019). Interpretation of multivariate association patterns between multicollinear physical activity accelerometry data and cardiometabolic health in children—a tutorial. Metabolites, 9(7), 129. https://doi.org/10.3390/metabo9070129
  • Aadland, E., Andersen, L. B., Skrede, T., Ekelund, U., Anderssen, S. A., Resaland, G. K., & Lucía, A. (2017). Reproducibility of objectively measured physical activity and sedentary time over two seasons in children; Comparing a day-by-day and a week-by-week approach. PloS One, 12(12), e0189304. https://doi.org/10.1371/journal.pone.0189304
  • Aadland, E., Holmøy, O. K., & Nilsen, A. K. O. (2021). The multivariate physical activity signature associated with body mass index in young children. Preventive Medicine, 145, 106437. https://doi.org/10.1016/j.ypmed.2021.106437
  • Aadland, E., & Johannessen, K. (2015). Agreement of objectively measured physical activity and sedentary time in preschool children. Preventive Medicine Reports, 2, 635–639. https://doi.org/10.1016/j.pmedr.2015.07.009
  • Aadland, E., Kvalheim, O. M., Anderssen, S. A., Resaland, G. K., & Andersen, L. B. (2018). The multivariate physical activity signature associated with metabolic health in children. The International Journal of Behavioral Nutrition and Physical Activity, 15(77). https://doi.org/10.1186/s12966-018-0707-z
  • Aadland, E., Nilsen, A. K. O., Ylvisåker, E., Johannessen, K., & Anderssen, S. A. (2020). Reproducibility of objectively measured physical activity: Reconsideration needed. Journal of Sports Sciences, 38(10), 1132–1139. https://doi.org/10.1080/02640414.2020.1743054
  • Aadland, E., & Ylvisåker, E. (2015). Reliability of objectively measured sedentary time and physical activity in adults. PloS One, 10(7), 1–13. https://doi.org/10.1371/journal.pone.0133296
  • Aadland, E., Ylvisåker, E., Johannessen, K., & Nilsen, A. K. O. (2022). Prospective association patterns for the physical activity intensity spectrum with body mass index and lower body muscle strength in Norwegian children aged 3–9 years. Journal of Physical Activity & Health, 20(1), 20–27. https://doi.org/10.1123/jpah.2022-0157
  • Addy, C. L., Trilk, J. L., Dowda, M., Byun, W., & Pate, R. R. (2014). Assessing preschool children’s physical activity: how many days of accelerometry measurement. Pediatric Exercise Science, 26(1), 103–109. https://doi.org/10.1123/pes.2013-0021
  • Artero, E. G., Espana-Romero, V., Castro-Pinero, J., Ortega, F. B., Suni, J., Ruiz, J. R., & Castillo-Garzon, M. J. (2011). Reliability of field-based fitness tests in youth. International Journal of Sports Medicine, 32(3), 159–169. https://doi.org/10.1055/s-0030-1268488
  • Baranowski, T., Masse, L. C., Ragan, B., & Welk, G. (2008). How many days was that? We’re still not sure, but we’re asking the question better! Medicine and Science in Sports and Exercise, 40(7), S544–9. https://doi.org/10.1249/MSS.0b013e31817c6651
  • Basterfield, L., Adamson, A. J., Pearce, M. S., & Reilly, J. J. (2011). Stability of habitual physical activity and sedentary behavior monitoring by accelerometry in 6-to 8-year-olds. Journal of Physical Activity & Health, 8(4), 543–547. https://doi.org/10.1123/jpah.8.4.543
  • Bisson, M., Tremblay, F., Pronovost, E., Julien, A., & Marc, I. (2018). Accelerometry to measure physical activity in toddlers: Determination of wear time requirements for a reliable estimate of physical activity. Journal of Sport Sciences, 37(3), 298–305. https://doi.org/10.1080/02640414.2018.1499391
  • Cadenas-Sanchez, C., Martinez-Tellez, B., Sanchez Delgado, G., Mora-Gonzalez, J., Castro-Pinero, J., Lof, M., Ruiz, J. R., & Ortega, F. B. (2016). Assessing physical fitness in preschool children: Feasibility, reliability and practical recommendations for the PREFIT battery. Journal of Science and Medicine in Sport, 19(11), 910–915. https://doi.org/10.1016/j.jsams.2016.02.003
  • Cain, K. L., Sallis, J. F., Conway, T. L., Van Dyck, D., & Calhoon, L. (2013). Using accelerometers in youth physical activity studies: A review of methods. Journal of Physical Activity & Health, 10(3), 437–450. https://doi.org/10.1123/jpah.10.3.437
  • Cattuzzo, M. T., Henrique, R. D., AHN, R., Oliveira, I. S., Sousa Moura M, M. B., de Sousa Moura, M., de Araújo, R. C., & Stodden, D. (2016). Motor competence and health related physical fitness in youth: A systematic review. Journal of Science and Medicine in Sport, 19(2), 123–129. https://doi.org/10.1016/j.jsams.2014.12.004
  • Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000). Establishing a standard definition for child overweight and obesity worldwide: International survey. Bmj, 320(7244), 1240–1243. https://doi.org/10.1136/bmj.320.7244.1240
  • Coleman, K. J., & Epstein, L. H. (1998). Application of generalizability theory to measurement of activity in males who are not regularly active: A preliminary report. Research Quarterly for Exercise and Sport, 69(1), 58–63. https://doi.org/10.1080/02701367.1998.10607667
  • De Vet, H. C., Terwee, C. B., Mokkink, L. B., & Knol, D. L. (2011). Measurement in medicine: A practical guide. Cambridge university press.
  • Esliger, D. W., Copeland, J. L., Barnes, J. D., & Tremblay, M. S. (2005). Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. JPhysAct Health, 2(3), 366. https://doi.org/10.1123/jpah.2.3.366
  • Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S., & McMurray, R. G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 1557–1565. https://doi.org/10.1080/02640410802334196
  • Hart, T. L., Swartz, A. M., Cashin, S. E., & Strath, S. J. (2011). How many days of monitoring predict physical activity and sedentary behaviour in older adults? The International Journal of Behavioral Nutrition and Physical Activity, 8(1), 8. https://doi.org/10.1186/1479-5868-8-62
  • Hinkley, T., O’Connell, E., Okely, A. D., Crawford, D., Hesketh, K., & Salmon, J. (2012). Assessing volume of accelerometry data for reliability in preschool children. Medicine and Science in Sports and Exercise, 44(12), 2436–2441. https://doi.org/10.1249/MSS.0b013e3182661478
  • Hislop, J., Law, J., Rush, R., Grainger, A., Bulley, C., Reilly, J. J., & Mercer, T. (2014). An investigation into the minimum accelerometry wear time for reliable estimates of habitual physical activity and definition of a standard measurement day in pre-school children. Physiological Measurement, 35(11), 2213–2228. https://doi.org/10.1088/0967-3334/35/11/2213
  • Hutcheon, J. A., Chiolero, A., & Hanley, J. A. (2010). Random measurement error and regression dilution bias. British Medical Journal, 340(jun23 2), 340. https://doi.org/10.1136/bmj.c2289
  • Janz, K. F., Witt, J., & Mahoney, L. T. (1995). The stability of children's physical-activity as measured by accelerometry and self-report. Medicine and Science in Sports and Exercise, 27(9), 1326–1332. https://doi.org/10.1249/00005768-199509000-00014
  • Jerome, G. J., Young, D. R., Laferriere, D., Chen, C. H., & Vollmer, W. M. (2009). Reliability of RT3 Accelerometers among Overweight and Obese Adults. Medicine and Science in Sports and Exercise, 41(1), 110–114. https://doi.org/10.1249/MSS.0b013e3181846cd8
  • John, D., & Freedson, P. (2012). ActiGraph and Actical physical activity monitors: A peek under the hood. Medicine and Science in Sports and Exercise, 44(1 Suppl 1), S86–9. https://doi.org/10.1249/MSS.0b013e3182399f5e
  • Kang, M., Bjornson, K., Barreira, T. V., Ragan, B. G., & Song, K. (2014). The minimum number of days required to establish reliable physical activity estimates in children aged 2–15 years. Physiological Measurement, 35(11), 2229–2237. https://doi.org/10.1088/0967-3334/35/11/2229
  • Kvalheim, O. M., Arneberg, R., Grung, B., & Rajalahti, T. (2018). Determination of optimum number of components in partial least squares regression from distributions of the root-mean-squared error obtained by Monte Carlo resampling. J Chemometrics, 32(4), e2993. https://doi.org/10.1002/cem.2993
  • Kvalheim, O. M., & Karstang, T. V. (1989). Interpretation of latent-variable regression-models. Chemometrics and Intelligent Laboratory Systems, 7(1–2), 39–51. https://doi.org/10.1016/0169-7439(89)80110-8
  • Leppänen, M., Henriksson, P., Nyström, C. D., Henriksson, H., Ortega, F. B., Pomeroy, J., RUIZ, J. R., CADENAS-SANCHEZ, C., & Löf, M. (2017). Longitudinal physical activity, body composition, and physical fitness in preschoolers. Medicine & Science in Sports and Exercise, 49(10), 49. https://doi.org/10.1249/MSS.0000000000001313
  • Leppänen, M., Nyström, C. D., Henriksson, P., Pomeroy, J., Ruiz, J., Ortega, F. & Cadenas-Sánchez CLöf, M. (2016). Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: Results from the ministop trial. International Journal of Obesity, 40(7), 1126–1133. https://doi.org/10.1038/ijo.2016.54
  • Levin, S., Jacobs, D. R., Ainsworth, B. E., Richardson, M. T., & Leon, A. S. (1999). Intra-individual variation and estimates of usual physical activity. Annals of Epidemiology, 9(8), 481–488. https://doi.org/10.1016/S1047-2797(99)00022-8
  • Matthews, C. E., Ainsworth, B. E., Thompson, R. W., & Bassett, D. R. (2002). Sources of variance in daily physical activity levels as measured by an accelerometer. Medicine and Science in Sports and Exercise, 34(8), 1376–1381. https://doi.org/10.1097/00005768-200208000-00021
  • Matthews, C. E., Hagstromer, M., Pober, D. M., & Bowles, H. R. (2012). Best practices for using physical activity monitors in population-based research. Medicine and Science in Sports and Exercise, 44, S68–76. https://doi.org/10.1249/MSS.0b013e3182399e5b
  • Mattocks, C., Leary, S., Ness, A., Deere, K., Saunders, J., Kirkby, J., Blair, S. N., Tilling, K., & Riddoch, C. (2007). Intraindividual variation of objectively measured physical activity in children. Medicine and Science in Sports and Exercise, 39(4), 622–629. https://doi.org/10.1249/mss.0b013e318030631b
  • McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30–46. https://doi.org/10.1037/1082-989X.1.1.30
  • Murray, D. M., Catellier, D. J., Hannan, P. J., Treuth, M. S., Stevens, J., & Schmitz, K. H., et al. (2004). School-level intraclass correlation for physical activity in adolescent girls. Medicine and Science in Sports and Exercise, 36(5), 876–882. https://doi.org/10.1249/01.mss.0000126806.72453.1c
  • Nilsen, A. K. O., Anderssen, S. A., Loftesnes, J. M., Johannessen, K., Ylvisaaker, E., & Aadland, E. (2019). The multivariate physical activity signature associated with fundamental motor skills in preschoolers. Journal of Sports Sciences, 38(3), 1–9. https://doi.org/10.1080/02640414.2019.1694128
  • Nilsen, A. K. O., Anderssen, S. A., Ylvisåker, E., Johannessen, K., & Aadland, E. Moderate-to-vigorous physical activity among Norwegian preschoolers varies by sex, age, and season. (2019). Scandinavian Journal of Medicine & Science in Sports, 29(6), 862–873. In press. https://doi.org/10.1111/sms.13405
  • Ojiambo, R., Cuthill, R., Budd, H., Konstabel, K., Casajus, J. A., Gonzalez-Aguero, A., Anjila, E., Reilly, J. J., Easton, C., & Pitsiladis, Y. P. (2011). Impact of methodological decisions on accelerometer outcome variables in young children. International Journal of Obesity, 35(S1), S98–103. https://doi.org/10.1038/ijo.2011.40
  • Ortega, F. B., Artero, E. G., Ruiz, J. R., Vicente-Rodriguez, G., Bergman, P., Hagströmer, M., Ottevaere, C., Nagy, E., Konsta, O., Rey-López, J. P., Polito, A., Dietrich, S., Plada, M., Béghin, L., Manios, Y., Sjöström, M., & Castillo, M. J. (2008). Reliability of health-related physical fitness tests in European adolescents. The HELENA Study. International Journal of Obesity, 32(5), S49–57. https://doi.org/10.1038/ijo.2008.183
  • Ortega, F. B., Cadenas-Sanchez, C., Sanchez Delgado, G., Mora-Gonzalez, J., Martinez-Tellez, B., Artero, E. G., Castro-Piñero, J., Labayen, I., Chillón, P., Löf, M., & Ruiz, J. (2015). Systematic review and proposal of a field-based physical fitness-test battery in preschool children: The PREFIT battery. Sports Medicine, 45(4), 533–555. https://doi.org/10.1007/s40279-014-0281-8
  • Penpraze, V., Reilly, J. J., MacLean, C. M., Montgomery, C., Kelly, L. A., Paton, J. Y., Aitchison , T., & Grant, S. (2006). Monitoring of physical activity in young children: How much is enough? Pediatric Exercise Science, 18(4), 483–491. https://doi.org/10.1123/pes.18.4.483
  • Poitras, V. J., Gray, C. E., Borghese, M. M., Carson, V., Chaput, J. -P., Janssen, I., Katzmarzyk, P. T., Pate, R. R., Gorber, S. C., Kho, M. E., Sampson, M., & Tremblay, M. S. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Applied Physiology, Nutrition, and Metabolism, 41(6 Suppl 3), S197–239. https://doi.org/10.1139/apnm-2015-0663
  • Rajalahti, T., Arneberg, R., Berven, F. S., Myhr, K. M., Ulvik, R. J., & Kvalheim, O. M. (2009). Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemometrics and Intelligent Laboratory Systems, 95(1), 35–48. https://doi.org/10.1016/j.chemolab.2008.08.004
  • Rajalahti, T., Arneberg, R., Kroksveen, A. C., Berle, M., Myhr, K. M., & Kvalheim, O. M. (2009). Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Analytical Chemistry, 81(7), 2581–2590. https://doi.org/10.1021/ac802514y
  • Rajalahti, T., & Kvalheim, O. M. (2011). Multivariate data analysis in pharmaceutics: A tutorial review. International Journal of Pharmaceutics, 417(1–2), 280–290. https://doi.org/10.1016/j.ijpharm.2011.02.019
  • Rich, C., Geraci, M., Griffiths, L., Sera, F., Dezateux, C., Cortina-Borja, M., & Dasgupta, K. (2013). Quality control methods in accelerometer data processing: Defining minimum wear time. PloS One, 8(6), e67206. https://doi.org/10.1371/journal.pone.0067206
  • Treuth, M. S., Sherwood, N. E., Butte, N. F., McClanahan, B., Obarzanek, E., Zhou, A., Ayers, C., Adolph, A., Jordan, J., Jacobs, R. JR., & Rochon, J. (2003). Validity and reliability of activity measures in African-American girls for GEMS. Medicine and Science in Sports and Exercise, 35(3), 532–539. https://doi.org/10.1249/01.mss.0000053702.03884.3f
  • Trost, S. G., Loprinzi, P. D., Moore, R., & Pfeiffer, K. A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Medicine and Science in Sports and Exercise, 43(7), 1360–1368. https://doi.org/10.1249/MSS.0b013e318206476e
  • Trost, S. G., McIver, K. L., & Pate, R. R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise, 37(11), S531–43. https://doi.org/10.1249/01.mss.0000185657.86065.98
  • Trost, S. G., Pate, R. R., Freedson, P. S., Sallis, J. F., & Taylor, W. C. (2000). Using objective physical activity measures with youth: How many days of monitoring are needed? Medicine and Science in Sports and Exercise, 32(2), 426–431. https://doi.org/10.1097/00005768-200002000-00025
  • Utesch, T., Bardid F, Busch, D., Strauss, B., & Bardid, F. (2019). The relationship between motor competence and physical fitness from early childhood to early adulthood: A meta-analysis. Sports Medicine, 49(4), 541–551. https://doi.org/10.1007/s40279-019-01068-y
  • Veldman, S. L., MJCA, P., & Altenburg, T. M. (2021). Physical activity and prospective associations with indicators of health and development in children aged< 5 years: A systematic review. The International Journal of Behavioral Nutrition and Physical Activity, 18(1), 1–11. https://doi.org/10.1186/s12966-020-01072-w
  • Wickel, E. E., & Welk, G. J. (2010). Applying generalizability theory to estimate habitual activity levels. Medicine and Science in Sports and Exercise, 42(8), 1528–1534. https://doi.org/10.1249/MSS.0b013e3181d107c4
  • Wiersma, R., Haverkamp, B. F., van Beek, J. H., Riemersma, A. M. J., Boezen, H. M., Smidt, N., Corpeleijn, E., & Hartman, E. (2020). Unravelling the association between accelerometer-derived physical activity and adiposity among preschool children: A systematic review and meta-analyses. Obesity Reviews, 21(2), 15. https://doi.org/10.1111/obr.12936
  • Wold, S., Ruhe, A., Wold, H., & Dunn, W. J. (1984). THE COLLINEARITY PROBLEM in LINEAR-REGRESSION - the PARTIAL LEAST-SQUARES (PLS) APPROACH to GENERALIZED INVERSES. Siam Journal on Scientific and Statistical Computing, 5(3), 735–743. https://doi.org/10.1137/0905052