422
Views
1
CrossRef citations to date
0
Altmetric
Physical Activity, Health and Exercise

Can the heart rate response at the respiratory compensation point be used to retrieve the maximal metabolic steady state?

, &
Pages 1025-1032 | Received 20 Jun 2023, Accepted 21 Aug 2023, Published online: 18 Sep 2023

References

  • Anselmi, F., Cavigli, L., Pagliaro, A., Valente, S., Valentini, F., Cameli, M., Focardi, M., Mochi, N., Dendale, P., Hansen, D., Bonifazi, M., Halle, M., & D’Ascenzi, F. (2021). The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. Scandinavian Journal of Medicine & Science in Sports, 31(9), 1796–1808. https://doi.org/10.1111/sms.14007
  • Åstrand, P.-O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. Journal of Applied Physiology, 7(2), 218–221. https://doi.org/10.1152/jappl.1954.7.2.218
  • Billat, V., Palacin, F., Poinsard, L., Edwards, J., & Maron, M. (2022). Heart rate does not reflect the %VO2max in recreational runners during the marathon. International Journal of Environmental Research and Public Health, 19(19), 12451. https://doi.org/10.3390/ijerph191912451
  • Broxterman, R. M., Craig, J. C., & Richardson, R. S. (2018). The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Medicine & Science in Sports & Exercise, 50(11), 2379–2382. https://doi.org/10.1249/MSS.0000000000001699
  • Burnley, M., Vanhatalo, A., & Jones, A. M. (2012). Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. Journal of Applied Physiology, 113(2), 215–223. https://doi.org/10.1152/japplphysiol.00022.2012
  • Caen, K., Boone, J., Bourgois, J. G., COLOSIO, A. L., & POGLIAGHI, S. (2020). Translating ramp V˙O2 into constant power output: A novel strategy that minds the gap. Medicine & Science in Sports & Exercise, 52(9), 2020–2028. https://doi.org/10.1249/MSS.0000000000002328
  • Caen, K., Pogliaghi, S., Lievens, M., Vermeire, K., Bourgois, J. G., & Boone, J. (2021). Ramp vs. step tests: Valid alternatives to determine the maximal lactate steady-state intensity? European Journal of Applied Physiology, 121(7), 1899–1907. https://doi.org/10.1007/s00421-021-04620-9
  • Cannon, D. T., Bimson, W. E., Hampson, S. A., Bowen, T. S., Murgatroyd, S. R., Marwood, S., Kemp, G. J., & Rossiter, H. B. (2014). Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension. Journal of Physiology, Paris, 592(23), 5287–5300. https://doi.org/10.1113/jphysiol.2014.279174
  • Coyle, E. F., & González-Alonso, J. (2001). Cardiovascular drift during prolonged exercise: New perspectives. Exercise and Sport Sciences Reviews, 29(2), 88–92. https://doi.org/10.1249/00003677-200104000-00009
  • Fullerton, M. M., Passfield, L., MacInnis, M. J., Iannetta, D., & Murias, J. M. (2021). Prior exercise impairs subsequent performance in an intensity- and duration-dependent manner. Applied Physiology, Nutrition, and Metabolism, 46(8), 976–985. https://doi.org/10.1139/apnm-2020-0689
  • Hansen, D., Abreu, A., Ambrosetti, M., Cornelissen, V., Gevaert, A., Kemps, H., Laukkanen, J. A., Pedretti, R., Simonenko, M., Wilhelm, M., Davos, C. H., Doehner, W., Iliou, M.-C., Kränkel, N., Völler, H., & Piepoli, M. (2022). Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: Why and how: A position statement from the secondary prevention and rehabilitation section of the European Association of Preventive Cardiology. European Journal of Preventive Cardiology, 29(1), 230–245. https://doi.org/10.1093/eurjpc/zwab007
  • Hansen, D., Bonné, K., Alders, T., Hermans, A., Copermans, K., Swinnen, H., Maris, V., Jansegers, T., Mathijs, W., Haenen, L., Vaes, J., Govaerts, E., Reenaers, V., Frederix, I., & Dendale, P. (2019). Exercise training intensity determination in cardiovascular rehabilitation: Should the guidelines be reconsidered? European Journal of Preventive Cardiology, 26(18), 1921–1928. https://doi.org/10.1177/2047487319859450
  • Iannetta, D., Azevedo de A, R., Keir, D. A., & Murias, J. M. (2019). Establishing the Vo2 versus constant-work-rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem. Journal of Applied Physiology, 19(6), 1519–1527. https://doi.org/10.1152/japplphysiol.00508.2019
  • Iannetta, D., Inglis, E. C., Fullerton, C., Passfield, L., & Murias, J. M. (2018). Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scandinavian Journal of Medicine & Science in Sports, 28(12), 2481–2493. https://doi.org/10.1111/sms.13280
  • Iannetta, D., Inglis, E. C., Pogliaghi, S., Murias, J. M., & Keir, D. A. (2020). A “step–ramp–step” protocol to identify the maximal metabolic steady state. Medicine & Science in Sports and Exercise, 52(9), 2011–2019. https://doi.org/10.1249/MSS.0000000000002343
  • Iannetta, D., Ingram, C. P., Keir, D. A., & Murias, J. M. (2022). Methodological reconciliation of CP and MLSS and their agreement with the maximal metabolic steady state. Medicine & Science in Sports & Exercise, 54(4), 622–632. https://doi.org/10.1249/MSS.0000000000002831
  • Iannetta, D., Mackie, M. Z., Keir, D. A., & Murias, J. M. (2023). A single test protocol to establish the full spectrum of exercise intensity prescription. Medicine & Science in Sports & Exercise. https://doi.org/10.1249/MSS.0000000000003249
  • Inglis, E. C., Iannetta, D., Keir, D. A., &Murias, J. M. (2019). Training-induced Changes in the RCP, [HHb]BP and MLSS: Evidence of equivalence. International Journal of Sports Physiology and Performance, 15(1), 119–125. https://doi.org/10.1123/ijspp.2019-0046
  • Jamnick, N. A., Pettitt, R. W., Granata, C., Pyne, D. B., & Bishop, D. J. (2020). An examination and critique of current methods to determine exercise intensity. Sports Medicine, 50(10), 1729–1756. https://doi.org/10.1007/s40279-020-01322-8
  • Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M., & Pogliaghi, S. (2015). Exercise intensity thresholds: Identifying the boundaries of sustainable performance. Medicine and Science in Sports and Exercise, 47(9), 1932–1940. https://doi.org/10.1249/MSS.0000000000000613
  • Keir, D. A., Iannetta, D., Mattioni Maturana, F., Kowalchuk, J. M., & Murias, J. M. (2022). Identification of non-invasive exercise thresholds: Methods, strategies, and an online App. Sports Medicine, 52(2), 237–255. https://doi.org/10.1007/s40279-021-01581-z
  • Keir, D. A., Pogliaghi, S., & Murias, J. M. (2018). The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Medicine and Science in Sports and Exercise, 50(11), 2375–2378. https://doi.org/10.1249/MSS.0000000000001698
  • Laginestra, F. G., Berg, O. K., Nyberg, S. K., Venturelli, M., Wang, E., & Helgerud, J. (2023). Stroke volume response during prolonged exercise depends on left ventricular filling: Evidence from a β-blockade study. American Journal of Physiology-Regulatory, Integrative & Comparative Physiology, 325(2), R154–R163. https://doi.org/10.1152/ajpregu.00293.2022
  • Leo, P., Spragg, J., Simon, D., Lawley, J. S., & Mujika, I. (2020). Training characteristics and power profile of professional U23 cyclists throughout a competitive season. Sports, 8(12), 167. https://doi.org/10.3390/sports8120167
  • Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A., & Gibala, M. J. (2011). An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 300(6), R1303–R1310. https://doi.org/10.1152/ajpregu.00538.2010
  • Martini, A. D., Dalleck, L. C., Mejuto, G., Larwood, T., Weatherwax, R. M., & Ramos, J. S. (2022). Changes in the second ventilatory threshold following individualised versus standardised exercise prescription among physically inactive adults: A randomised trial. International Journal of Environmental Research and Public Health, 19(7), 3962. https://doi.org/10.3390/ijerph19073962
  • Poole, D. C., Ward, S. A., Gardner, G. W., & WHIPP, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265–1279. https://doi.org/10.1080/00140138808966766
  • Rossiter, H. B. (2011). Exercise: Kinetic considerations for gas exchange. Comprehensive Physiology, 1(1), 203–244. https://doi.org/10.1002/cphy.c090010
  • Sylta, Ø., Tønnessen, E., & Seiler, S. (2014). From heart-rate data to training quantification: A comparison of 3 methods of training-intensity analysis. International Journal of Sports Physiology and Performance, 9(1), 100–107. https://doi.org/10.1123/IJSPP.2013-0298
  • Teso, M., Colosio, A. L., & Pogliaghi, S. (2022). An intensity-dependent slow component of HR interferes with accurate exercise implementation in postmenopausal women. Medicine & Science in Sports & Exercise, 54(4), 655–664. https://doi.org/10.1249/MSS.0000000000002835
  • Valentini, M., & Parati, G. (2009). Variables influencing heart rate. Progress in Cardiovascular Diseases, 52(1), 11–19. https://doi.org/10.1016/j.pcad.2009.05.004
  • Vanhatalo, A., Black, M. I., DiMenna, F. J., Blackwell, J. R., Schmidt, J. F., Thompson, C., Wylie, L. J., Mohr, M., Bangsbo, J., Krustrup, P., & Jones, A. M. (2016). The mechanistic bases of the power-time relationship: Muscle metabolic responses and relationships to muscle fibre type. Journal of Physiology, Paris, 594(15), 4407–4423. https://doi.org/10.1113/JP271879
  • Weatherwax, R. M., Harris, N. K., Kilding, A. E., & DALLECK, L. C. (2019). Incidence of V˙O2max responders to personalized versus standardized exercise prescription. Medicine & Science in Sports & Exercise, 51(4), 681–691. https://doi.org/10.1249/MSS.0000000000001842
  • Wergel-Kolmert, U., Wisén, A., & Wohlfart, B. (2002). Repeatability of measurements of oxygen consumption, heart rate and Borg’s scale in men during ergometer cycling: VO 2 variation in ergometer cycling tests. Clinical Physiology and Functional Imaging, 22(4), 261–265. https://doi.org/10.1046/j.1475-097X.2002.00428.x
  • Weston, S. B., & Gabbett, T. J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. Journal of Science and Medicine in Sport, 4(3), 357–366. https://doi.org/10.1016/S1440-2440(01)80044-X
  • Whipp, B. J. (1996). Domains of aerobic function and their limiting parameters. In The physiology and pathophysiology of exercise tolerance (Vol. 31, pp. 83–89). Springer US.
  • Wingo, J. E., Ganio, M. S., & Cureton, K. J. (2012). Cardiovascular drift during heat stress: Implications for exercise prescription. Exercise and Sport Sciences Reviews, 40(2), 88–94. https://doi.org/10.1097/JES.0b013e31824c43af
  • Wolpern, A. E., Burgos, D. J., Janot, J. M., & Dalleck, L. C. (2015). Is a threshold-based model a superior method to the relative percent concept for establishing individual exercise intensity? a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 7(1), 16–16. https://doi.org/10.1186/s13102-015-0011-z
  • Zinner, C., Gerspitzer, A., Düking, P., Jan, B., Thorsten, S., Hans-Christer, H., & Billy, S. (2023). The magnitude and time-course of physiological responses to 9 weeks of incremental ramp testing. Scandinavian Journal of Medicine & Science in Sports, 33, 1146–1156. https://doi.org/10.1111/sms.14347
  • Zuccarelli, L., Porcelli, S., Rasica, L., Marzorati, M., & Grassi, B. (2018). Comparison between slow components of HR and V˙O2 kinetics: Functional significance. Medicine and Science in Sports and Exercise, 50(8), 1649–1657. https://doi.org/10.1249/MSS.0000000000001612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.