822
Views
0
CrossRef citations to date
0
Altmetric
Physiology and Nutrition

Mechanically demanding eccentric exercise increases nuclear factor erythroid 2-related factor 2 activity in human peripheral blood mononuclear cells

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1231-1239 | Received 05 Aug 2023, Accepted 20 Sep 2023, Published online: 27 Sep 2023

References

  • Abruzzo, P. M., Esposito, F., Marchionni, C., DiTullio, S., Belia, S., Fulle, S., Veicsteinas, A., & Marini, M. (2013). Moderate exercise training induces ros-related adaptations to skeletal muscles. International Journal of Sports Medicine, 34(8), 676–687. https://doi.org/10.1055/s-0032-1323782
  • Aggarwal, V., Tuli, H. S., Varol, A., Thakral, F., Yerer, M. B., Sak, K., Varol, M., Jain, A., Khan, M. A., & Sethi, G. (2019). Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 9(11), 735. https://doi.org/10.3390/BIOM9110735
  • Ashida, Y., Himori, K., Tatebayashi, D., Yamada, R., Ogasawara, R., & Yamada, T. (2018). Effects of contraction mode and stimulation frequency on electrical stimulation-induced skeletal muscle hypertrophy. Journal of Applied Physiology, 124(2), 341–348. https://doi.org/10.1152/JAPPLPHYSIOL.00708.2017
  • Ballmann, C., McGinnis, G., Peters, B., Slivka, D., Cuddy, J., Hailes, W., Dumke, C., Ruby, B., & Quindry, J. (2014). Exercise-induced oxidative stress and hypoxic exercise recovery. European Journal of Applied Physiology, 114(4), 725–733. https://doi.org/10.1007/s00421-013-2806-5
  • Banerjee, R. (2012). Redox outside the box: Linking extracellular Redox remodeling with intracellular Redox metabolism. The Journal of Biological Chemistry, 287(7), 4397. https://doi.org/10.1074/JBC.R111.287995
  • Bennett, D. A. (2001). How can I deal with missing data in my study? Australian and New Zealand Journal of Public Health, 25(5), 464–469. https://doi.org/10.1111/J.1467-842X.2001.TB00294.X
  • Burry, M., Hawkins, D., & Spangenburg, E. E. (2007). Lengthening contractions differentially affect p70s6k phosphorylation compared to isometric contractions in rat skeletal muscle. European Journal of Applied Physiology, 100(4), 409–415. https://doi.org/10.1007/S00421-007-0444-5
  • Chen, M., Dai, L. H., Fei, A., Pan, S. M., & Wang, H. R. (2017). Isoquercetin activates the ERK1/2-Nrf2 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Experimental and Therapeutic Medicine, 13(4), 1353. https://doi.org/10.3892/ETM.2017.4093
  • Cohen, J. (1988). Statistical power analysis for the social Sciences (2nd ed.). Lawrence Erlbaum Associates.
  • Cuadrado, A., Rojo, A. I., Wells, G., Hayes, J. D., Cousin, S. P., Rumsey, W. L., Attucks, O. C., Franklin, S., Levonen, A. L., Kensler, T. W., & Dinkova-Kostova, A. T. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Reviews Drug Discovery, 18(4), 295–317. https://doi.org/10.1038/s41573-018-0008-x
  • de Oliveira, V. N., Bessa, A., Jorge, M. L. M. P., da Silva Oliveira, R. J., de Mello, M. T., de Agostini, G. G., Jorge, P. T., & Espindola, F. S. (2012). The effect of different training programs on antioxidant status, oxidative stress, and metabolic control in type 2 diabetes. Applied Physiology, Nutrition, and Metabolism, 37(2), 334–344. https://doi.org/10.1139/H2012-004
  • Dinkova-Kostova, A. T., & Kazantsev, A. G. (2017). Activation of Nrf2 signaling as a common treatment of neurodegenerative diseases. Neurodegenerative Disease Management, 7(2), 97–100. https://doi.org/10.2217/nmt-2017-0011
  • Dinkova-Kostova, A. T., Kostov, R. V., & Canning, P. (2017). Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Archives of Biochemistry and Biophysics, 617, 84–93. https://doi.org/10.1016/j.abb.2016.08.005
  • Done, A. J., Gage, M. J., Nieto, N. C., & Traustadóttir, T. (2016). Exercise-induced Nrf2-signaling is impaired in aging. Free Radical Biology and Medicine, 96, 130–138. https://doi.org/10.1016/j.freeradbiomed.2016.04.024
  • Done, A. J., Newell, M. J., & Traustadóttir, T. (2017). Effect of exercise intensity on Nrf2 signalling in young men. Free Radical Research, 51(6), 646–655. https://doi.org/10.1080/10715762.2017.1353689
  • Eliasson, J., Elfegoun, T., Nilsson, J., Köhnke, R., Ekblom, B., & Blomstrand, E. (2006). Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. American Journal of Physiology Endocrinology and Metabolism, 291(6), E1197–E1205. https://doi.org/10.1152/AJPENDO.00141.2006
  • Elkins, M. R. (2015). Assessing baseline comparability in randomised trials. Journal of Physiotherapy, 61(4), 228–230. https://doi.org/10.1016/J.JPHYS.2015.07.005
  • Field, A. (2016). An adventure in statistics: The reality enigma. SAGE PublicationsSage CA.
  • Franchi, M. V., Atherton, P. J., Reeves, N. D., Flück, M., Williams, J., Mitchell, W. K., Selby, A., Beltran Valls, R. M., & Narici, M. V. (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica, 210(3), 642–654. https://doi.org/10.1111/APHA.12225
  • García-López, D., Cuevas, M. J., Almar, M., Lima, E., De Paz, J. A., & González-Gallego, J. (2007). Effects of eccentric exercise on NF-κB activation in blood mononuclear cells. Medicine and Science in Sports and Exercise, 39(4), 653–664. https://doi.org/10.1249/mss.0b013e31802f04f6
  • Groeger, A. L., Cipollina, C., Cole, M. P., Woodcock, S. R., Bonacci, G., Rudolph, T. K., Rudolph, V., Freeman, B. A., & Schopfer, F. J. (2010). Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nature Chemical Biology, 6(6), 433. https://doi.org/10.1038/NCHEMBIO.367
  • Harris-Love, M. O., Gollie, J. M., & Keogh, J. W. L. (2021). Eccentric exercise: Adaptations and applications for Health and performance. Journal of Functional Morphology and Kinesiology, 6(4), 96. https://doi.org/10.3390/JFMK6040096
  • Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., & Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology & Medicine, 46(4), 443. https://doi.org/10.1016/J.FREERADBIOMED.2008.10.040
  • Ichimura, Y., Waguri, S., Sou, Y. S., Kageyama, S., Hasegawa, J., Ishimura, R., Saito, T., Yang, Y., Kouno, T., Fukutomi, T., Hoshii, T., Hirao, A., Takagi, K., Mizushima, T., Motohashi, H., Lee, M. S., Yoshimori, T., Tanaka, K., Yamamoto, M., & Komatsu, M. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Molecular Cell, 51(5), 618–631. https://doi.org/10.1016/J.MOLCEL.2013.08.003
  • Jackson, M. J., Vasilaki, A., & McArdle, A. (2016). Cellular mechanisms underlying oxidative stress in human exercise. Free Radical Biology and Medicine, 98, 13–17. https://doi.org/10.1016/j.freeradbiomed.2016.02.023
  • Ji, L. L., Gomez-Cabrera, M. C., & Vina, J. (2006). Exercise and hormesis: Activation of cellular antioxidant signaling pathway. Annals of the New York Academy of Sciences, 1067(1), 425–435. https://doi.org/10.1196/annals.1354.061
  • Kamandulis, S., De Souza Leite, F., Hernández, A., Katz, A., Brazaitis, M., Bruton, J. D., Venckunas, T., Masiulis, N., Mickeviciene, D., Eimantas, N., Subocius, A., Rassier Di, E., Skurvydas, A., Ivarsson, N., & Westerblad, H. (2017). Prolonged force depression after mechanically demanding contractions is largely independent of Ca2+ and reactive oxygen species. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31(11), 4809–4820. https://doi.org/10.1096/FJ.201700019R
  • Kamandulis, S., Mickevicius, M., Snieckus, A., Streckis, V., Montiel-Rojas, D., Chaillou, T., Westerblad, H., & Venckunas, T. (2021). Increasing the resting time between drop jumps lessens delayed-onset muscle soreness and limits the extent of prolonged low-frequency force depression in human knee extensor muscles. European Journal of Applied Physiology, 122(1), 255–266. https://doi.org/10.1007/S00421-021-04834-X
  • Kobayashi, M., & Yamamoto, M. (2006). Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Advances in Enzyme Regulation, 46(1), 113–140. https://doi.org/10.1016/j.advenzreg.2006.01.007
  • Liu, G. H., Qu, J., & Shen, X. (2008). NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta, 1783(5), 713–727. https://doi.org/10.1016/J.BBAMCR.2008.01.002
  • McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2021). Defining training and performance caliber: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 1–15. https://doi.org/10.1123/ijspp.2021-0451
  • Michaelson, L. P., Shi, G., Ward, C. W., & Rodney, G. G. (2010). Mitochondrial redox potential during contraction in single intact muscle fibers. Muscle and Nerve, 42(4), 522–529. https://doi.org/10.1002/mus.21724
  • Montero, D., Tachibana, C., Rahr Winther, J., & Appenzeller-Herzog, C. (2013). Intracellular glutathione pools are heterogeneously concentrated. Redox biology, 1(1), 508. https://doi.org/10.1016/J.REDOX.2013.10.005
  • Muthusamy, V. R., Kannan, S., Sadhaasivam, K., Gounder, S. S., Davidson, C. J., Boeheme, C., Hoidal, J. R., Wang, L., & Rajasekaran, N. S. (2012). Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radical Biology and Medicine, 52(2), 366–376. https://doi.org/10.1016/j.freeradbiomed.2011.10.440
  • Nabavi, S. F., Barber, A. J., Spagnuolo, C., Russo, G. L., Daglia, M., Nabavi, S. M., & Sobarzo-Sánchez, E. (2016). Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Critical Reviews in Clinical Laboratory Sciences, 53(5), 293–312. https://doi.org/10.3109/10408363.2015.1129530
  • Neilson, L., Quinn, J., & Gray, N. (2020). Peripheral blood NRF2 expression as a biomarker in human Health and disease. Antioxidants, 10(1), 1–12. https://doi.org/10.3390/ANTIOX10010028
  • Nikolaidis, M. G., Jamurtas, A. Z., Paschalis, V., Fatouros, I. G., Koutedakis, Y., & Kouretas, D. (2008). The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: Magnitude and time-course considerations. Sports Medicine, 38(7), 579–606. https://doi.org/10.2165/00007256-200838070-00005
  • Nikolaidis, M. G., Paschalis, V., Giakas, G., Fatouros, I. G., Koutedakis, Y., Kouretas, D., & Jamurtas, A. Z. (2007). Decreased blood oxidative stress after repeated muscle-damaging exercise. Medicine and Science in Sports and Exercise, 39(7), 1080–1089. https://doi.org/10.1249/MSS.0B013E31804CA10C
  • Onur, E., Kabaroĝlu, C., Günay, Ö., Var, A., Yilmaz, Ö., Dündar, P., Tikiz, C., Güvenç, Y., & Yüksel, H. (2011). The beneficial effects of physical exercise on antioxidant status in asthmatic children. Allergologia et immunopathologia, 39(2), 90–95. https://doi.org/10.1016/J.ALLER.2010.04.006
  • Ostrom, E. L., & Traustadóttir, T. (2020). Aerobic exercise training partially reverses the impairment of Nrf2 activation in older humans. Free Radical Biology and Medicine, 160, 418–432. https://doi.org/10.1016/j.freeradbiomed.2020.08.016
  • Parise, G., Phillips, S. M., Kaczor, J. J., & Tarnopolsky, M. A. (2005). Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, 39(2), 289–295. https://doi.org/10.1016/j.freeradbiomed.2005.03.024
  • Pekovic-Vaughan, V., Gibbs, J., Yoshitane, H., Yang, N., Pathiranage, D., Guo, B., Sagami, A., Taguchi, K., Bechtold, D., Loudon, A., Yamamoto, M., Chan, J., van der Horst, G. T. J., Fukada, Y., & Meng, Q. J. (2014). The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes & Development, 28(6), 548. https://doi.org/10.1101/GAD.237081.113
  • Perry, C. G. R., Lally, J., Holloway, G. P., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2010). Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. Journal of Physiology, Paris, 588(Pt 23), 4795. https://doi.org/10.1113/JPHYSIOL.2010.199448
  • Rahbek, S. K., Farup, J., Møller, A. B., Vendelbo, M. H., Holm, L., Jessen, N., & Vissing, K. (2014). Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids, 46(10), 2377–2392. https://doi.org/10.1007/s00726-014-1792-1
  • Robledinos-Antón, N., Fernández-Ginés, R., Manda, G., & Cuadrado, A. (2019). Activators and inhibitors of NRF2: A review of their potential for clinical development. In Oxidative medicine and cellular longevity (Vol. 2019). Hindawi Limited. https://doi.org/10.1155/2019/9372182
  • Rudkowska, I., Raymond, C., Ponton, A., Jacques, H., Lavigne, C., Holub, B. J., Marette, A., & Vohl, M. C. (2011). Validation of the use of peripheral blood mononuclear cells as surrogate model for skeletal muscle tissue in nutrigenomic studies. Omics: A Journal of Integrative Biology, 15(1–2), 1–7. https://doi.org/10.1089/OMI.2010.0073
  • Sakellariou, G. K., Vasilaki, A., Palomero, J., Kayani, A., Zibrik, L., McArdle, A., & Jackson, M. J. (2013). Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxidants and Redox Signaling, 18(6), 603–621. https://doi.org/10.1089/ars.2012.4623
  • Scott, H. A., Latham, J. R., Callister, R., Pretto, J. J., Baines, K., Saltos, N., Upham, J. W., & Wood, L. G. (2015). Acute exercise is associated with reduced exhaled nitric oxide in physically inactive adults with asthma. Annals of Allergy, Asthma & Immunology, 114(6), 470–479. https://doi.org/10.1016/j.anai.2015.04.002
  • Silva-Islas, C. A., & Maldonado, P. D. (2018). Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacological Research, 134, 92–99. https://doi.org/10.1016/J.PHRS.2018.06.013
  • Skurvydas, A., Mamkus, G., Kamandulis, S., Dudoniene, V., Valanciene, D., & Westerblad, H. (2016). Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. European Journal of Applied Physiology, 116(11–12), 2215–2224. https://doi.org/10.1007/S00421-016-3473-0
  • Spanidis, Y., Veskoukis, A. S., Papanikolaou, C., Stagos, D., Priftis, A., Deli, C. K., Jamurtas, A. Z., & Kouretas, D. (2018). Exercise-induced reductive stress is a protective mechanism against oxidative stress in peripheral blood mononuclear cells. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/3053704
  • Steinbacher, P., & Eckl, P. (2015). Impact of oxidative stress on exercising skeletal muscle. Biomolecules, 5(2), 356–377. MDPI AG. https://doi.org/10.3390/biom5020356
  • Sun, Q., Zeng, C., Du, L., & Dong, C. (2021). Mechanism of circadian regulation of the NRF2/ARE pathway in renal ischemia-reperfusion. Experimental and Therapeutic Medicine, 21(3). https://doi.org/10.3892/ETM.2021.9622
  • Thorley, J., Thomas, C., Thon, N., Nuttall, H., Martin, N. R. W., Bishop, N., Bailey, S. J., & Clifford, T. (2023). Combined effects of green tea supplementation and eccentric exercise on nuclear factor erythroid 2-related factor 2 activity. European Journal of Applied Physiology. https://doi.org/10.1007/S00421-023-05271-8
  • Tofas, T., Fatouros, I. G., Draganidis, D., Deli, C. K., Chatzinikolaou, A., Tziortzis, C., Panayiotou, G., Koutedakis, Y., & Jamurtas, A. Z. (2021). Effects of cardiovascular, resistance and combined exercise training on cardiovascular, performance and blood redox parameters in coronary artery disease patients: An 8-month training-detraining randomized intervention. Antioxidants, 10(3), 1–18. https://doi.org/10.3390/antiox10030409
  • Vomund, S., Schäfer, A., Parnham, M. J., Brüne, B., & Von Knethen, A. (2017). Nrf2, the master regulator of anti-oxidative responses. International Journal of Molecular Sciences, 18(12). MDPI AG. https://doi.org/10.3390/ijms18122772.
  • Wiecek, M., Szymura, J., Maciejczyk, M., Kantorowicz, M., & Szygula, Z. (2018). Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and men. Frontiers in Physiology, 9(JUL). https://doi.org/10.3389/FPHYS.2018.01006
  • Woo, Y., Lee, H. J., Jung, Y. M., & Jung, Y. J. (2019). mTOR-Mediated antioxidant activation in solid tumor radioresistance. Journal of Oncology, 2019. https://doi.org/10.1155/2019/5956867
  • Yang, Y. C., Lii, C. K., Lin, A. H., Yeh, Y. W., Yao, H. T., Li, C. C., Liu, K. L., & Chen, H. W. (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radical Biology and Medicine, 51(11), 2073–2081. https://doi.org/10.1016/J.FREERADBIOMED.2011.09.007
  • Yang, S. Y., Pyo, M. C., Nam, M. H., & Lee, K. W. (2019). ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress. BMC Complementary and Alternative Medicine, 19(1), 1–13. https://doi.org/10.1186/s12906-019-2551-3
  • Zeibig, J., Karlic, H., Lohninger, A., Dumsgaard, R., & Smekal, G. (2005). Do blood cells mimic gene expression profile alterations known to occur in muscular adaptation to endurance training? European Journal of Applied Physiology, 95(1), 96–104. https://doi.org/10.1007/s00421-005-1334-3
  • Zipper, L. M., & Mulcahy, R. T. (2000). Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochemical and Biophysical Research Communications, 278(2), 484–492. https://doi.org/10.1006/BBRC.2000.3830