1,090
Views
1
CrossRef citations to date
0
Altmetric
Sports Performance

Field- and Laboratory-derived Power-Cadence Profiles in World-Class and Elite Track Sprint Cyclists

, , , &
Pages 1635-1642 | Received 09 May 2023, Accepted 19 Nov 2023, Published online: 04 Dec 2023

References

  • Arsac, L., Belli, A., & Lacour, J. R. (1996). Muscle function during brief maximal exercise: Accurate measurements on a friction loaded cycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 74(1–2), 100–106. https://doi.org/10.1007/BF00376501
  • Bertucci, W., Duc, S., Villerius, V., Pernin, J. N., & Grappe, F. (2005, December). Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM device. International Journal of Sports Medicine, 26(10), 868–873. https://doi.org/10.1055/s-2005-837463
  • Bertucci, W., Grappe, F., & Groslambert, A. (2007). Laboratory versus outdoor cycling conditions: Differences in pedaling biomechanics. Journal of Applied Biomechanics, 23(2), 87–92. https://doi.org/10.1123/jab.23.2.87
  • Bertucci, W., Taiar, R., & Grappe, F. (2005). Differences between sprint tests under laboratory and actual cycling conditions. The Journal of Sports Medicine and Physical Fitness, 45(3), 277–283. Available fromhttps://pubmed.ncbi.nlm.nih.gov/16230977/.
  • Bini, R., Hume, P., Croft, J., & Kilding, A. (2013). Pedal force effectiveness in cycling: A review of constraints and training effects. Journal of Science and Cycling, 2, 11–24. Available from. https://www.jsc-journal.com/index.php/JSC/article/view/32
  • Cohen, J. (1988). Statistical power analysis for the Behavioral Sciences (2nd ed). Routledge. https://doi.org/10.4324/9780203771587
  • Coyle, E., Costill, D. L., Lesmes, G. R. (1979). Leg extension power and muscle fiber composition. Medicine and Science in Sports, 11(1), 12–15. https://pubmed.ncbi.nlm.nih.gov/158119/
  • Coyle, E. F., Feiring, D. C., Rotkis, T. C., Cote III, R. W., Roby, F. B., Lee, W., & Wilmore, J. H. (1981). Specificity of power improvements through slow and fast isokinetic training. Journal of Applied Physiology, 51(6), 1437–1442. https://doi.org/10.1152/jappl.1981.51.6.1437
  • Dankel, S. J., & Loenneke, J. P. (2021). Effect sizes for paired data should use the change score variability rather than the pre-test variability. The Journal of Strength & Conditioning Research, 35(6), 1773–1778. https://doi.org/10.1519/jsc.0000000000002946
  • Dorel, S. (2018). Maximal force-velocity and power-velocity characteristics in cycling: Assessment and relevance. Biomechanics of Training and Testing. https://doi.org/10.1007/978-3-319-05633-3_2
  • Dorel, S., Hautier, C., Rambaud, O., Rouffet, D., Van Praagh, E., Lacour, J. R., Bourdin, M. (2005). Torque and power-velocity relationships in cycling: Relevance to track sprint performance in world-class cyclists. International Journal of Sports Medicine, 26(9), 739–746. https://doi.org/10.1055/s-2004-830493
  • Dunst, A. K., Hesse, C., Ueberschär, O., & Holmberg, H. C. (2022). Fatigue-free force-velocity and power-velocity profiles for elite track sprint cyclists: The influence of duration, gear ratio and pedalling rates. Sports, 10(9), 130. https://doi.org/10.3390/sports10090130
  • Dwyer, D., Molaro, C., & Rouffet, D. (2022). Force–velocity profiles of track cyclists differ between seated and non-seated positions. Sports Biomechanics, 22(4), 1–12. https://doi.org/10.1080/14763141.2022.2092029
  • Faria, E. W., Parker, D. L., Faria, I. E. (2005a). The science of cycling: Factors affecting performance - part 2. Sports Medicine, 35(4), 313–337. https://doi.org/10.2165/00007256-200535040-00003
  • Faria, E. W., Parker, D. L., Faria, I. E. (2005b). The science of cycling: Physiology and training - part 1. Sports Medicine, 35(4), 285–312. https://doi.org/10.2165/00007256-200535040-00002
  • Gardner, A., Martin, D., Barras, M., Jenkins, D., & Hahn, A. (2005). Power output demands of elite track sprint cycling. International Journal of Performance Analysis in Sport, 5(3), 149–154(6. https://doi.org/10.1080/24748668.2005.11868345
  • Gardner, A., Martin, J., Martin, D., Barras, M., & Jenkins, D. (2007). Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. International Journal of Performance Analysis in Sport, 101(3), 287–292. https://doi.org/10.1007/s00421-007-0498-4
  • Hansen, E. A., Rønnestad, B. R., Vegge, G., & Raastad, T. (2012). Cyclists’ improvement of pedaling efficacy and performance after heavy strength training. International Journal of Sports Physiology and Performance, 7(4), 313–321. https://doi.org/10.1123/ijspp.7.4.313
  • Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for studies in Sports Medicine and exercise Science. Medicine & Science in Sports & Exercise, 41(1), 3–12. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Kautz, S. A., & Hull, M. L. (1993). A theoretical basis for interpreting the force applied to the pedal in cycling. Journal of Biomechanics, 26(2), 155–165. 02/1/1993 https://doi.org/10.1016/0021-9290(93)90046-H
  • Kordi, M., Folland, J., Goodall, S., Barratt, P., & Howatson, G. (Oct 7. 2019). Isovelocity vs. Isoinertial sprint cycling tests for power- and torque-cadence relationships. International Journal of Sports Medicine, 40(14), 897–902. https://doi.org/10.1055/a-0989-2387
  • Li, L., & Caldwell, G. E. (1998). Muscle coordination in cycling: Effect of surface incline and posture. Journal of Applied Physiology, 85(3), 927–934. https://doi.org/10.1152/jappl.1998.85.3.927
  • McCartney, N., Heigenhauser, G. J. F., & Jones, N. L. (1983). Power output and fatigue of human muscle in maximal cycling exercise. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 55(1 I), 218–224. https://doi.org/10.1152/jappl.1983.55.1.218
  • McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D.T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2021). Defining training and performance caliber: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://doi.org/10.1123/ijspp.2021-0451.
  • Merkes, P. F. J., Menaspà, P., & Abbiss, C. R. (Nov 1. 2019). Validity of the Velocomp PowerPod compared with the verve cycling InfoCrank power Meter. International Journal of Sports Physiology and Performance, 14(10), 1382–1387. https://doi.org/10.1123/ijspp.2018-0790
  • Merkes, P. F. J., Menaspà, P., & Abbiss, C. R. (2020). Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions. Scandinavian Journal of Medicine & Science in Sports, 30(1), 64–73. https://doi.org/10.1111/sms.13555
  • Motulsky, H. J., & Brown, R. E. (2006). Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, 7(1), 123. https://doi.org/10.1186/1471-2105-7-123
  • Pijpers, J. R., Oudejans, R. R., & Bakker, F. C. (2005, April). Anxiety-induced changes in movement behaviour during the execution of a complex whole-body task. The Quarterly Journal of Experimental Psychology Section A, 58(3), 421–445. https://doi.org/10.1080/02724980343000945
  • Reiser, M., Meyer, T., Kindermann, W., & Daugs, R. (2000). Transferability of workload measurements between three different types of ergometer. International Journal of Performance Analysis in Sport, 82(3), 245–249. https://doi.org/10.1007/s004210050678
  • Rudsits, B., Hopkins, W., Hautier, C., & Rouffet, D. (2018). Force-velocity test on a stationary cycle ergometer: Methodological recommendations. Journal of Applied Physiology, 124(4), 831–839. https://doi.org/10.1152/japplphysiol.00719.2017
  • So, R. C. H., Ng, J. K. F., & Ng, G. Y. F. (2005). Muscle recruitment pattern in cycling: A review. Physical Therapy in Sport, 6(2), 89–96. https://doi.org/10.1016/j.ptsp.2005.02.004
  • Wackwitz, T. A., Minahan, C. L., King, T., Du Plessis, C., Andrews, M. H., & Bellinger, P. M. (2020). Quantification of maximal power output in well-trained cyclists. Journal of Sports Sciences, 39(1), 1–7. https://doi.org/10.1080/02640414.2020.1805251
  • Wilkinson, R. D., Lichtwark, G. A., & Cresswell, A. G. (2020). The mechanics of seated and nonseated cycling at very-high-power output: A joint-level analysis. Medicine & Science in Sports & Exercise, 52(7), 1585–1594. https://doi.org/10.1249/mss.0000000000002285
  • Yeo, B. K., Rouffet, D. M., & Bonanno, D. R. (2015). Foot orthoses do not affect crank power output during maximal exercise on a cycle-ergometer. Journal of Science and Medicine in Sport, 19(5), 368–372. https://doi.org/10.1016/j.jsams.2015.04.015