106
Views
0
CrossRef citations to date
0
Altmetric
Sport and Exercise Psychology

Anodal transcranial direct current stimulation does not enhance the effects of motor imagery training of a sequential finger-tapping task in young adults

, , , , , , , , & show all
Pages 392-403 | Received 05 Jun 2023, Accepted 01 Mar 2024, Published online: 04 Apr 2024

References

  • Allman, C., Amadi, U., Winkler, A. M., Wilkins, L., Filippini, N., Kischka, U., Stagg, C. J., & Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Science Translational Medicine, 8(330), 330re1. https://doi.org/10.1126/scitranslmed.aad5651
  • Apšvalka, D., Ramsey, R., & Cross, E. S. (2018). Anodal tDCS over primary motor cortex provides No advantage to learning motor sequences via observation. Neural Plasticity, 2018, 1–14. https://doi.org/10.1155/2018/1237962
  • Avanzino, L., Giannini, A., Tacchino, A., Pelosin, E., Ruggeri, P., & Bove, M. (2009). Motor imagery influences the execution of repetitive finger opposition movements. Neuroscience Letters, 466(1), 11–15. https://doi.org/10.1016/j.neulet.2009.09.036
  • Bakker, M., Verstappen, C. C. P., Bloem, B. R., & Toni, I. (2007). Recent advances in functional neuroimaging of gait. Journal of Neural Transmission, 114(10), 1323–1331. https://doi.org/10.1007/s00702-007-0783-8
  • Besson, P., Muthalib, M., De Vassoigne, C., Rothwell, J., & Perrey, S. (2020). Effects of multiple sessions of cathodal priming and anodal HD-tDCS on visuo motor task plateau learning and retention. Brain Sciences, 10(11), 875. Article 11. https://doi.org/10.3390/brainsci10110875
  • Bonassi, G., Biggio, M., Bisio, A., Ruggeri, P., Bove, M., & Avanzino, L. (2017). Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex. Scientific Reports, 7(1). Article 1. https://doi.org/10.1038/s41598-017-09597-0
  • Bonassi, G., Lagravinese, G., Bisio, A., Ruggeri, P., Pelosin, E., Bove, M., & Avanzino, L. (2020). Consolidation and retention of motor skill after motor imagery training. Neuropsychologia, 143, 107472. https://doi.org/10.1016/j.neuropsychologia.2020.107472
  • Boraxbekk, C., Hagkvist, F., & Lindner, P. (2016). Motor and mental training in older people: Transfer, interference, and associated functional neural responses. Neuropsychologia, 89, 371–377. https://doi.org/10.1016/j.neuropsychologia.2016.07.019
  • Bortoletto, M., Pellicciari, M. C., Rodella, C., & Miniussi, C. (2015). The interaction with task-induced activity is more important than polarization: A tDCS study. Brain Stimulation, 8(2), 269–276. https://doi.org/10.1016/j.brs.2014.11.006
  • Chew, T., Ho, K.-A., & Loo, C. K. (2015). Inter- and intra-individual variability in response to transcranial direct Current stimulation (tDCS) at varying Current intensities. Brain Stimulation, 8(6), 1130–1137. https://doi.org/10.1016/j.brs.2015.07.031
  • Corsi, P. M. (1973). Human memory and the medial temporal region of the brain (Vol. 34). ProQuest Information & Learning.
  • Debarnot, U., Abichou, K., Kalenzaga, S., Sperduti, M., & Piolino, P. (2015). Variable motor imagery training induces sleep memory consolidation and transfer improvements. Neurobiology of Learning and Memory, 119, 85–92. https://doi.org/10.1016/j.nlm.2014.12.010
  • Debarnot, U., Castellani, E., & Guillot, A. (2012). Selective delayed gains following motor imagery of complex movements. Archives Italiennes de Biologie, 150(4), 238–50. Article 4. https://doi.org/10.4449/aib.v150i4.1394
  • Debarnot, U., Castellani, E., Guillot, A., Giannotti, V., Dimarco, M., & Sebastiani, L. (2012). Declarative interference affects off-line processing of motor imagery learning during both sleep and wakefulness. Neurobiology of Learning and Memory, 98(4), 361–367. https://doi.org/10.1016/j.nlm.2012.10.009
  • Debarnot, U., Creveaux, T., Collet, C., Doyon, J., & Guillot, A. (2009). Sleep contribution to motor memory consolidation: A motor imagery study. Sleep, 32(12), 1559–1565. https://doi.org/10.1093/sleep/32.12.1559
  • Debarnot, U., DiRienzo, F., Daligault, S., & Schwartz, S. (2020). Motor imagery training during arm immobilization prevents corticomotor idling: An EEG resting-state analysis. Brain Topography, 33(3), 327–335. https://doi.org/10.1007/s10548-020-00763-8
  • Debarnot, U., Maley, L., Rossi, D. D., & Guillot, A. (2010). Motor interference does not impair the memory consolidation of imagined movements. Brain and Cognition, 74(1), 52–57. https://doi.org/10.1016/j.bandc.2010.06.004
  • Debarnot, U., Metais, A., Digonet, G., Freitas, E., Blache, Y., & Saimpont, A. (2022). Sleep dependent consolidation of gross motor sequence learning with motor imagery. Psychology of Sport and Exercise, 61, 102216. https://doi.org/10.1016/j.psychsport.2022.102216
  • Debarnot, U., Neveu, R., Samaha, Y., Saruco, E., Macintyre, T., & Guillot, A. (2019). Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS. Neurobiology of Learning and Memory, 164, 107062. https://doi.org/10.1016/j.nlm.2019.107062
  • DiRienzo, F., Debarnot, U., Daligault, S., Saruco, E., Delpuech, C., Doyon, J., Collet, C., & Guillot, A. (2016). Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Frontiers in Human Neuroscience, 10, 10. https://doi.org/10.3389/fnhum.2016.00315
  • Doyon, J. (2008). Motor sequence learning and movement disorders. Current Opinion in Neurology, 21(4), 478–483. https://doi.org/10.1097/WCO.0b013e328304b6a3
  • Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161–167. https://doi.org/10.1016/j.conb.2005.03.004
  • Doyon, J., Gabitov, E., Vahdat, S., Lungu, O., & Boutin, A. (2018). Current issues related to motor sequence learning in humans. Current Opinion in Behavioral Sciences, 20, 89–97. https://doi.org/10.1016/j.cobeha.2017.11.012
  • Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79(4), 481–492. https://doi.org/10.1037/0021-9010.79.4.481
  • Floyer-Lea, A., & Matthews, P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94(1), 512–518. https://doi.org/10.1152/jn.00717.2004
  • Foerster, Á., Rocha, S., Wiesiolek, C., Chagas, A. P., Machado, G., Silva, E., Fregni, F., & Monte-Silva, K. (2013). Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning. European Journal of Neuroscience, 37(5), 786–794. https://doi.org/10.1111/ejn.12079
  • Freitas, E., Saimpont, A., Blache, Y., & Debarnot, U. (2020). Acquisition and consolidation of sequential footstep movements with physical and motor imagery practice. Scandinavian Journal of Medicine & Science in Sports, 30(12), 2477–2484. https://doi.org/10.1111/sms.13799
  • Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 117(4), 845–850. https://doi.org/10.1016/j.clinph.2005.12.003
  • Grafton, S. T., Woods, R. P., & Tyszka, M. (1994). Functional imaging of procedural motor learning: Relating cerebral blood flow with individual subject performance. Human Brain Mapping, 1(3), 221–234. https://doi.org/10.1002/hbm.460010307
  • Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10–20. https://doi.org/10.3200/JMBR.37.1.10-20
  • Guimarães, A. N., Porto, A. B., Marcori, A. J., Lage, G. M., Altimari, L. R., & Alves Okazaki, V. H. (2023). Motor learning and tDCS: A systematic review on the dependency of the stimulation effect on motor task characteristics or tDCS assembly specifications. Neuropsychologia, 179, 108463. https://doi.org/10.1016/j.neuropsychologia.2022.108463
  • Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor planning, imagery, and execution in the distributed motor network: A time-course study with functional MRI. Cerebral Cortex, 18(12), 2775–2788. https://doi.org/10.1093/cercor/bhn036
  • Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage: Reports, 67, 283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020
  • Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain and Cognition, 102, 1–12. https://doi.org/10.1016/j.bandc.2015.11.005
  • Héroux, M. E., Loo, C. K., Taylor, J. L., Gandevia, S. C., & Wicherts, J. M. (2017). Questionable science and reproducibility in electrical brain stimulation research. Public Library of Science ONE, 12(4), e0175635. https://doi.org/10.1371/journal.pone.0175635
  • Hétu, S., Grégoire, M., Saimpont, A., Coll, M.-P., Eugène, F., Michon, P.-E., & Jackson, P. L. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5), 930–949. https://doi.org/10.1016/j.neubiorev.2013.03.017
  • Hupfeld, K. E., Ketcham, C. J., & Schneider, H. D. (2017). Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks. Experimental Brain Research, 235(3), 851–859. https://doi.org/10.1007/s00221-016-4848-5
  • Iannone, A., Santiago, I., Ajao, S. T., Brasil-Neto, J., Rothwell, J. C., & Spampinato, D. A. (2022). Comparing the effects of focal and conventional tDCS on motor skill learning: A proof of principle study. Neuroscience Research, 178, 83–86. https://doi.org/10.1016/j.neures.2022.01.006
  • Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation, 82(8), 1133–1141. https://doi.org/10.1053/apmr.2001.24286
  • Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage: Reports, 20(2), 1171–1180. https://doi.org/10.1016/S1053-8119(03)00369-0
  • Jeannerod, M., & Decety, J. (1995). Mental motor imagery: A window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732. https://doi.org/10.1016/0959-4388(95)80099-9
  • Kang, E. K., & Paik, N.-J. (2011). Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Experimental & Translational Stroke Medicine, 3(1), 4. https://doi.org/10.1186/2040-7378-3-4
  • Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning – evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710–2715. https://doi.org/10.1111/j.1460-9568.2012.08175.x
  • Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648. https://doi.org/10.1016/j.brs.2012.09.010
  • Lefebvre, S., & Liew, S.-L. (2017). Anatomical parameters of tDCS to modulate the motor system after stroke: A review. Frontiers in Neurology, 8, 8. https://doi.org/10.3389/fneur.2017.00029
  • Lerner, O., Friedman, J., & Frenkel-Toledo, S. (2021). The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: A randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 18(1), 103. https://doi.org/10.1186/s12984-021-00899-z
  • Li, R.-Q., Li, Z.-M., Tan, J.-Y., Chen, G.-L., & Lin, W.-Y. (2017). Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials. Complementary Therapies in Clinical Practice, 28, 75–84. https://doi.org/10.1016/j.ctcp.2017.05.009
  • Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., & Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of Cognitive Neuroscience, 11(5), 491–501. https://doi.org/10.1162/089892999563553
  • Maclean, A. W., Fekken, G. C., Saskin, P., & Knowles, J. B. (1992). Psychometric evaluation of the Stanford sleepiness scale. Journal of Sleep Research, 1(1), 35–39. https://doi.org/10.1111/j.1365-2869.1992.tb00006.x
  • Malouin, F., & Richards, C. L. (2010). Mental practice for relearning locomotor skills. Physical Therapy, 90(2), 240–251. https://doi.org/10.2522/ptj.20090029
  • Malouin, F., Richards, C. L., Jackson, P. L., Lafleur, M. F., Durand, A., & Doyon, J. (2007). The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. Journal of Neurologic Physical Therapy, 31(1), 20–29. https://doi.org/10.1097/01.NPT.0000260567.24122.64
  • McAvinue, L. P., & Robertson, I. H. (2008). Measuring motor imagery ability: A review. European Journal of Cognitive Psychology, 20(2), 232–251. https://doi.org/10.1080/09541440701394624
  • Metais, A., Muller, C. O., Boublay, N., Breuil, C., Guillot, A., Daligault, S., DiRienzo, F., Collet, C., Krolak-Salmon, P., & Saimpont, A. (2022). Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Frontiers in Aging Neuroscience, 14, 1060791. https://doi.org/10.3389/fnagi.2022.1060791
  • Muller, C. O., Muthalib, M., Mottet, D., Perrey, S., Dray, G., Delorme, M., Duflos, C., Froger, J., Xu, B., Faity, G., Pla, S., Jean, P., Laffont, I., & Bakhti, K. K. A. (2021). Recovering arm function in chronic stroke patients using combined anodal HD-tDCS and virtual reality therapy (ReArm): A study protocol for a randomized controlled trial. Trials, 22(1), 747. https://doi.org/10.1186/s13063-021-05689-5
  • Muthalib, M., Besson, P., Rothwell, J., & Perrey, S. (2018). Focal hemodynamic responses in the stimulated hemisphere during high-definition transcranial direct current stimulation. Neuromodulation: Journal of the International Neuromodulation Society, 21(4), 348–354. https://doi.org/10.1111/ner.12632
  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004
  • Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation – update 2011. Restorative Neurology and Neuroscience, 29(6), 463–492. https://doi.org/10.3233/RNN-2011-0618
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Pan, S. C., & Rickard, T. C. (2015). Sleep and motor learning: Is there room for consolidation? Psychological Bulletin, 141(4), 812–834. https://doi.org/10.1037/bul0000009
  • Patel, R., Ashcroft, J., Patel, A., Ashrafian, H., Woods, A. J., Singh, H., Darzi, A., & Leff, D. R. (2019). The impact of transcranial direct Current stimulation on upper-limb motor performance in healthy adults: A systematic review and meta-analysis. Frontiers in Neuroscience, 13, 1213. https://doi.org/10.3389/fnins.2019.01213
  • Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596. https://doi.org/10.1097/WCO.0b013e32834c3db0
  • Rodgers, W., Hall, C., & Buckolz, E. (1991). The effect of an imagery training program on imagery ability, imagery use, and figure skating performance. Journal of Applied Sport Psychology, 3(2), 109–125. https://doi.org/10.1080/10413209108406438
  • Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61–78. https://doi.org/10.1016/j.neuroscience.2016.11.023
  • Ruffino, C., Truong, C., Dupont, W., Bouguila, F., Michel, C., Lebon, F., & Papaxanthis, C. (2021). Acquisition and consolidation processes following motor imagery practice. Scientific Reports, 11(1). Article 1. https://doi.org/10.1038/s41598-021-81994-y
  • Saimpont, A., Malouin, F., Durand, A., Mercier, C., diRienzo, F., Saruco, E., Collet, C., Guillot, A., & Jackson, P. L. (2021). The effects of body position and actual execution on motor imagery of locomotor tasks in people with a lower-limb amputation. Scientific Reports, 11(1). Article 1. https://doi.org/10.1038/s41598-021-93240-6
  • Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2013). Motor Imagery and Aging. Journal of Motor Behavior, 45(1), 21–28. https://doi.org/10.1080/00222895.2012.740098
  • Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2015). Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Research, 1597, 196–209. https://doi.org/10.1016/j.brainres.2014.11.050
  • Saimpont, A., Mercier, C., Malouin, F., Guillot, A., Collet, C., Doyon, J., Jackson, P. L., & Thut, G. (2016). Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task. The European Journal of Neuroscience, 43(1), 113–119. https://doi.org/10.1111/ejn.13122
  • Saruco, E., DiRienzo, F., Nunez-Nagy, S., Rubio-Gonzalez, M. A., Debarnot, U., Collet, C., Guillot, A., & Saimpont, A. (2018). Optimal combination of anodal transcranial direct Current stimulations and motor imagery interventions. Neural Plasticity, 2018, 1–7. https://doi.org/10.1155/2018/5351627
  • Saruco, E., DiRienzo, F., Nunez-Nagy, S., Rubio-Gonzalez, M. A., Jackson, P. L., Collet, C., Saimpont, A., & Guillot, A. (2017). Anodal tDCS over the primary motor cortex improves motor imagery benefits on postural control: A pilot study. Scientific Reports, 7(1). Article 1. https://doi.org/10.1038/s41598-017-00509-w
  • Saucedo Marquez, C., Zhang, X., Swinnen, S., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct Current stimulation on motor learning. Frontiers in Human Neuroscience, 7, 7. https://doi.org/10.3389/fnhum.2013.00333
  • Schmid, D., Erlacher, D., Klostermann, A., Kredel, R., & Hossner, E.-J. (2020). Sleep-dependent motor memory consolidation in healthy adults: A meta-analysis. Neuroscience and Biobehavioral Reviews, 118, 270–281. https://doi.org/10.1016/j.neubiorev.2020.07.028
  • Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., Kischka, U., & Ettlin, T. (2011). Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Medicine, 9(1), 75. https://doi.org/10.1186/1741-7015-9-75
  • Sobierajewicz, J., Jaśkowski, W., & Van der Lubbe, R. H. J. (2019). Does transcranial direct Current stimulation affect the learning of a fine sequential hand motor skill with motor imagery? Journal of Motor Behavior, 51(4), 451–465. https://doi.org/10.1080/00222895.2018.1513395
  • Summers, J. J., Kang, N., & Cauraugh, J. H. (2016). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Research Reviews, 25, 42–54. https://doi.org/10.1016/j.arr.2015.11.004
  • Thair, H., Holloway, A. L., Newport, R., & Smith, A. D. (2017). Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Design and Implementation. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00641 11
  • Toni, I., Krams, M., Turner, R., & Passingham, R. E. (1998). The time course of changes during motor sequence learning: A whole-brain fMRI study. Neuroimage: Reports, 8(1), 50–61. https://doi.org/10.1006/nimg.1998.0349
  • Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78(3), 553–564. https://doi.org/10.1006/nlme.2002.4091
  • Vancleef, K., Meesen, R., Swinnen, S. P., & Fujiyama, H. (2016). tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task. Scientific Reports, 6(1), 35739. https://doi.org/10.1038/srep35739
  • Vergallito, A., Feroldi, S., Pisoni, A., & Romero Lauro, L. J. (2022). Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors. Brain Sciences, 12(5), 522. Article 5. https://doi.org/10.3390/brainsci12050522
  • Wade, S., & Hammond, G. (2015). Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence. European Journal of Neuroscience, 41(12), 1597–1602. https://doi.org/10.1111/ejn.12916
  • Wilkinson, R. D., Mazzo, M. R., & Feeney, D. F. (2023). Rethinking the statistical analysis of neuromechanical data. Exercise and Sport Sciences Reviews, 51(1), 43–50. https://doi.org/10.1249/jes.0000000000000308

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.