45
Views
0
CrossRef citations to date
0
Altmetric
Physical Activity, Health and Exercise

Post-meal exercise under ecological conditions improves post-prandial glucose levels but not 24-hour glucose control

ORCID Icon, , , , , & show all
Pages 728-736 | Received 13 Nov 2023, Accepted 28 May 2024, Published online: 10 Jun 2024

References

  • Carr, M. C. (2003). The emergence of the metabolic syndrome with menopause. The Journal of Clinical Endocrinology and Metabolism, 88(6), 2404–2411. https://doi.org/10.1210/jc.2003-030242
  • Del Pozo Cruz, B., Ahmadi, M. N., Lee, I. M., & Stamatakis, E. (2022). Prospective associations of daily step counts and intensity with cancer and cardiovascular disease incidence and mortality and all-cause mortality. JAMA Internal Medicine, 182(11), 1139–1148. https://doi.org/10.1001/jamainternmed.2022.4000
  • Del Pozo Cruz, B., Ahmadi, M., Naismith, S. L., & Stamatakis, E. (2022). Association of daily step count and intensity with incident dementia in 78430 adults living in the UK. JAMA Neurology, 79(10), 1059–1063. https://doi.org/10.1001/jamaneurol.2022.2672
  • Derave, W., Lund, S., Holman, G. D., Wojtaszewski, J., Pedersen, O., & Richter, E. A. (1999). Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. American Journal of Physiology-Endocrinology & Metabolism, 277 (6 40-6):6), 1103–1110. https://doi.org/10.1152/ajpendo.1999.277.6.e1103
  • DiPietro, L., Gribok, A., Stevens, M. S., Hamm, L. F., & Rumpler, W. (2013). Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes Care, 36(10), 3262–3268. https://doi.org/10.2337/dc13-0084
  • Dunstan, D. W., Kingwell, B. A., Larsen, R., Healy, G. N., Cerin, E., Hamilton, M. T., Shaw, J. E., Bertovic, D. A., Zimmet, P. Z., Salmon, J., & Owen, N. (2012). Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care, 35(5), 976–983. https://doi.org/10.2337/dc11-1931
  • Dwyer, T., Hosmer, D., Hosmer, T., Venn, A. J., Blizzard, C. L., Granger, R. H., Cochrane, J. A., Blair, S. N., Shaw, J. E., Zimmet, P. Z., & Dunstan, D. (2007). The inverse relationship between number of steps per day and obesity in a population-based sample – the AusDiab study. International Journal of Obesity, 31(5), 797–804. https://doi.org/10.1038/sj.ijo.0803472
  • Engeroff, T., Groneberg, D. A., & Wilke, J. (2023). After dinner rest a while, after supper walk a mile? a systematic review with meta-analysis on the acute postprandial glycemic response to exercise before and after meal ingestion in healthy subjects and patients with impaired glucose tolerance. Sports Medicine, 53(4), 849–869. https://doi.org/10.1007/s40279-022-01808-7
  • Fisher, G., Windham, S. T., Griffin, P., Warren, J. L., Gower, B. A., & Hunter, G. R. (2017). Associations of human skeletal muscle fiber type and insulin sensitivity, blood lipids, and vascular hemodynamics in a cohort of premenopausal women. European Journal of Applied Physiology, 117(7), 1413–1422. https://doi.org/10.1007/s00421-017-3634-9
  • Francois, M. E., Baldi, J. C., Manning, P. J., Lucas, S. J. E., Hawley, J. A., Williams, M. J. A., & Cotter, J. D. (2014). ‘Exercise snacks’ before meals: A novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia, 57(7), 1437–1445. https://doi.org/10.1007/s00125-014-3244-6
  • Haizlip, K. M., Harrison, B. C., Leinwand, L. A. (2015). Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology, 30(1), 30–39. https://doi.org/10.1152/physiol.00024.2014
  • Hatamoto, Y., Goya, R., Yamada, Y., Yoshimura, E., Nishimura, S., Higaki, Y., & Tanaka, H. (2017). Effect of exercise timing on elevated postprandial glucose levels. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 123(2), 278–284. https://doi.org/10.1152/japplphysiol.00608.2016
  • Haxhi, J., Scotto Di Palumbo, A., & Sacchetti, M. (2013). Exercising for metabolic control: Is timing important? Annals of Nutrition & Metabolism, 62(1), 14–25. https://doi.org/10.1159/000343788
  • Heath, G. W., Gavin, J. R., Hinderliter, J. M., Hagberg, J. M., Bloomfield, S. A., & Holloszy, J. O. (1983). Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(2), 512–517. https://doi.org/10.1152/jappl.1983.55.2.512
  • Holmstrup, M., Fairchild, T., Keslacy, S., Weinstock, R., & Kanaley, J. (2014). Multiple short bouts of exercise over 12-h period reduce glucose excursions more than an energy-matched single bout of exercise. Metabolism: Clinical and Experimental, 63(4), 510–519. https://doi.org/10.1016/j.metabol.2013.12.006
  • Katzmarzyk, P. T., & Staiano, A. E. (2017). Relationship between meeting 24-hour movement guidelines and cardiometabolic risk factors in children. Journal of Physical Activity & Health, 14(10), 779–784. https://doi.org/10.1123/jpah.2017-0090
  • Katz, A., Sahlin, K., & Broberg, S. (1991). Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. American Journal of Physiology-Endocrinology & Metabolism, 260(3), 23–3. https://doi.org/10.1152/ajpendo.1991.260.3.e411
  • Klip, A., McGraw, T. E., & James, D. E. (2019). Thirty sweet years of GLUT4. Journal of Biological Chemistry, 294(30), 11369–11381. https://doi.org/10.1074/jbc.REV119.008351
  • Kovatchev, B. P. (2017). Metrics for glycaemic control-from HbA1c to continuous glucose monitoring. Nature Reviews Endocrinology, 13(7), 425–436. https://doi.org/10.1038/nrendo.2017.3
  • Kraniou, G. N., Cameron-Smith, D., & Hargreaves, M. (2006). Acute exercise and GLUT4 expression in human skeletal muscle: Influence of exercise intensity. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 101(3), 934–937. https://doi.org/10.1152/japplphysiol.01489.2005
  • Lee, I. M., Shiroma, E. J., Kamada, M., Bassett, D. R., Matthews, C. E., & Buring, J. E. (2019). Association of step volume and intensity with all-cause mortality in older women. JAMA Internal Medicine, 179(8), 1105–1112. https://doi.org/10.1001/jamainternmed.2019.0899
  • Little, J. P., Jung, M. E., Wright, A. E., Wright, W., & Manders, R. J. F. (2014). Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Applied Physiology, Nutrition, and Metabolism, 39(7), 835–841. https://doi.org/10.1139/apnm-2013-0512
  • Manohar, C., Levine, J. A., Nandy, D. K., Saad, A., Dalla Man, C., McCrady-Spitzer, S. K., Basu, R., Cobelli, C., Carter, R. E., Basu, A., & Kudva, Y. C. (2012). The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care, 35(12), 2493–2499. https://doi.org/10.2337/dc11-2381
  • Mikus, C. R., Oberlin, D. J., Libla, J. L., Taylor, A. M., Booth, F. W., & Thyfault, J. P. (2012). Lowering physical activity impairs glycemic control in healthy volunteers. Medicine & Science in Sports and Exercise, 44(2), 225–231. https://doi.org/10.1249/MSS.0b013e31822ac0c0
  • Monnier, L., Colette, C., & Owens, D. R. (2008). Glycemic variability: The third component of the dysglycemia in diabetes. Is it important? How to measure it? Journal of Diabetes Science and Technology, 2(6), 1094–1100. https://doi.org/10.1177/193229680800200618
  • Morgan, L. M., Shi, J. W., Hampton, S. M., & Frost, G. (2012). Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers. The British Journal of Nutrition, 108(7), 1286–1291. https://doi.org/10.1017/S0007114511006507
  • Nygaard, H., Rønnestad, B. R., Hammarström, D., Holmboe-Ottesen, G., & Høstmark, A. T. (2017). Effects of exercise in the fasted and postprandial state on interstitial glucose in hyperglycemic individuals. Journal of Sports Science and Medicine, 16(2), 254–263.
  • Oosthuyse, T., & Bosch, A. N. (2010). The effect of the menstrual cycle on exercise metabolism: Implications for exercise performance in eumenorrhoeic women. Sports Medicine, 40(3), 207–227. https://doi.org/10.2165/11317090-000000000-00000
  • Paluch, A. E., Gabriel, K. P., Fulton, J. E., Lewis, C. E., Schreiner, P. J., Sternfeld, B., Sidney, S., Siddique, J., Whitaker, K. M., & Carnethon, M. R. (2021). Steps per day and all-cause mortality in middle-aged adults in the coronary artery risk development in young adults study. JAMA Network Open, 4(9), 1–12. https://doi.org/10.1001/jamanetworkopen.2021.24516
  • Pannucci, T. E., Thompson, F. E., Bailey, R. L., Dodd, K. W., Potischman, N., Kirkpatrick, S. I., Alexander, G. L., Coleman, L. A., Kushi, L. H., Groesbeck, M., Sundaram, M., Clancy, H., George, S. M., Kahle, L., & Subar, A. F. (2018). Comparing reported dietary supplement intakes between two 24-hour recall methods: the automated self-administered 24-hour dietary assessment tool and the interview-administered automated multiple pass method. Journal of the Academy of Nutrition and Dietetics, 118(6), 1080–1086. https://doi.org/10.1016/j.jand.2018.02.013
  • Park, Y., Dodd, K. W., Kipnis, V., Thompson, F. E., Potischman, N., Schoeller, D. A., Baer, D. J., Midthune, D., Troiano, R. P., Bowles, H., & Subar, A. F. (2018). Comparison of self-reported dietary intakes from the automated self-administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. The American Journal of Clinical Nutrition, 107(1), 80–93. https://doi.org/10.1093/ajcn/nqx002
  • Peng, F., Li, X., Xiao, F., Zhao, R., & Sun, Z. (2022). Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends in Neurosciences, 45(6), 471–482. https://doi.org/10.1016/j.tins.2022.03.010
  • Piercy, K. L., & Troiano, R. P. (2018). Physical activity guidelines for Americans from the US department of health and human services. Circulation Cardiovascular Quality and Outcomes, 11(11), e005263. https://doi.org/10.1161/CIRCOUTCOMES.118.005263
  • Pulido, J. M. E., & Salazar, M. A. (1999). Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle. Archives of Medical Research, 30(1), 19–22. https://doi.org/10.1016/S0188-0128(98)00008-6
  • Reynolds, A. N., Mann, J. I., Williams, S., Venn, B. J. (2016). Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: A randomised crossover study. Diabetologia, 59(12), 2572–2578. https://doi.org/10.1007/s00125-016-4085-2
  • Reynolds, A. N., & Venn, B. J. (2018). The timing of activity after eating affects the glycaemic response of healthy adults: A randomised controlled trial. Nutrients, 10(11), 1743. https://doi.org/10.3390/nu10111743
  • Richter, E. A. (2021). Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? American Journal of Physiology-Endocrinology & Metabolism, 320(2), E240–E243. https://doi.org/10.1152/AJPENDO.00503.2020
  • Shambrook, P., Kingsley, M. I., Taylor, N. F., Wundersitz, D. W., Wundersitz, C. E., Paton, C. D., & Gordon, B. A. (2020). A comparison of acute glycaemic responses to accumulated or single bout walking exercise in apparently healthy, insufficiently active adults. Journal of Science & Medicine in Sport / Sports Medicine Australia, 23(10), 902–907. https://doi.org/10.1016/j.jsams.2020.02.015
  • Shambrook, P., Kingsley, M. I., Wundersitz, D. W., Xanthos, P. D., Wyckelsma, V. L., & Gordon, B. A. (2018). Glucose response to exercise in the post-prandial period is independent of exercise intensity. Scandinavian Journal of Medicine & Science in Sports, 28(3), 939–946. https://doi.org/10.1111/sms.12999
  • Solomon, T. P. J., Tarry, E., Hudson, C. O., Fitt, A. I., & Laye, M. J. (2020). Immediate post-breakfast physical activity improves interstitial postprandial glycemia: A comparison of different activity-meal timings. Pflügers Archiv – European Journal of Physiology, 472(2), 271–280. https://doi.org/10.1007/s00424-019-02300-4
  • Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., Hostler, D. P., Crill, M. T., Ragg, K. E., & Toma, K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 48(5), 623–629. https://doi.org/10.1177/002215540004800506
  • Sugiyama, M. G., & Agellon, L. B. (2012). Sex differences in lipid metabolism and metabolic disease risk. Biochemistry and Cell Biology, 90(2), 124–141. https://doi.org/10.1139/o11-067
  • Thivel, D., Tremblay, A., Genin, P. M., Panahi, S., Rivière, D., & Duclos, M. (2018). Physical activity, inactivity, and sedentary behaviors: Definitions and implications in occupational health. Frontiers in Public Health, 6(October), 1–5. https://doi.org/10.3389/fpubh.2018.00288
  • Tudor-Locke, C., Leonardi, C., Johnson, W. D., Katzmarzyk, P. T., & Church, T. S. (2011). Accelerometer steps/day translation of moderate-to-vigorous activity. Preventive Medicine, 53(1–2), 31–33. https://doi.org/10.1016/j.ypmed.2011.01.014
  • Washburn, B. D., & Ihm, J. M. (2021). Using step counts to prescribe physical activity: What is the optimal dose? Current Sports Medicine Reports, 20(8), 402–409. https://doi.org/10.1249/JSR.0000000000000868
  • World Health Organization. (2013, March). Report of the formal meeting of member states to conclude the work on the comprehensive global monitoring framework, including indicators, and a set of voluntary global targets for the prevention and control of noncommunicable diseases, 1–9.
  • Yan, H., Yang, W., Zhou, F., Li, X., Pan, Q., Shen, Z., Han, G., Newell-Fugate, A., Tian, Y., Majeti, R., Liu, W., Xu, Y., Wu, C., Allred, K., Allred, C., Sun, Y., & Guo, S. (2019). Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes, 68(2), 291–304. https://doi.org/10.2337/db18-0638
  • Zhang, X., Wongpipit, W., Sun, F., Sheridan, S., Huang, W. Y., Sit, C. H., & Wong, S. H. (2021). Walking initiated 20 minutes before the time of individual postprandial glucose peak reduces the glucose response in young men with overweight or obesity: A randomized crossover study. The Journal of Nutrition, 151(4), 866–875. https://doi.org/10.1093/jn/nxaa420

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.