359
Views
17
CrossRef citations to date
0
Altmetric
Articles

Speed of processing and executive functions in adults with phenylketonuria: Quick in finding the word, but not the ladybird

, , &
Pages 171-198 | Received 28 Sep 2016, Accepted 10 Apr 2017, Published online: 20 Jun 2017

References

  • Adler-Abramovich, L., Vaks, L., Carny, O., Trudler, D., Magno, A., Caflisch, A., … Gazit, E. (2012). Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nature chemical biology, 8, 701–706. doi: 10.1038/nchembio.1002
  • Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2012). Processing speed and executive functions in cognitive aging: How to disentangle their mutual relationship? Brain and Cognition, 79, 1–11. doi: 10.1016/j.bandc.2012.02.001
  • Albrecht, J., Garbade, S. F., & Burgard, P. (2009). Neuropsychological speed tests and blood phenylalanine levels in patients with phenylketonuria: A meta-analysis. Neuroscience and Biobehavioral Reviews, 33, 414–421. doi: 10.1016/j.neubiorev.2008.11.001
  • Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8, 71–82. doi: 10.1076/chin.8.2.71.8724
  • Anderson, P. J., & Leuzzi, V. (2010). White matter pathology in phenylketonuria. Molecular Genetics and Metabolism, 99(Suppl 1), S3–9. doi: 10.1016/j.ymgme.2009.10.005
  • Anderson, P. J., Wood, S. J., Francis, D. E., Coleman, L., Anderson, V., & Boneh, A. (2007). Are Neuropsychological Impairments in children with early-treated Phenylketonuria (PKU) related to white matter abnormalities or elevated Phenylalanine levels? Developmental Neuropsychology, 32, 645–668. doi: 10.1080/87565640701375963
  • Anderson, P. J., Wood, S. J., Francis, D. E., Coleman, L., Warwick, L., Casanelia, S., … MD, A. B. (2004). Neuropsychological functioning in children with early-treated phenylketonuria: Impact of white matter abnormalities. Developmental Medicine and Child Neurology, 46, 230–238. doi: 10.1111/j.1469-8749.2004.tb00477.x
  • Ardila, A., Pineda, D., & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15, 31–36. doi: 10.1093/arclin/15.1.31
  • Azouvi, P., Vallat-Azouvi, C., & Belmont, A. (2009). Cognitive deficits after traumatic coma. Progress in Brain Research, 177, 89–110. doi: 10.1016/S0079-6123(09)17708-7
  • Banerjee, P., Grange, D. K., Steiner, R. D., & White, D. A. (2010). Executive strategic processing during verbal fluency performance in children with Phenylketonuria. Child Neuropsychology, 17, 105–117. doi: 10.1080/09297049.2010.525502
  • Bendlin, B. B., Fitzgerald, M. E., Ries, M. L., Xu, G., Kastman, E. K., Thiel, B. W., … Johnson, S. C. (2010). White matter in aging and cognition: A cross-sectional study of microstructure in adults aged eighteen to eighty-three. Developmental Neuropsychology, 35, 257–277. doi: 10.1080/87565641003696775
  • Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81, 1641–60. doi: 10.1111/j.1467-8624.2010.01499.x
  • Blau, N., van Spronsen, F. J., & Levy, H. L. (2010). Phenylketonuria. Lancet, 376, 1417–27. doi: 10.1016/S0140-6736(10)60961-0
  • Bosse, M. L., & Valdois, S. (2009). Influence of the visual attention span on child reading performance: A cross-sectional study. Journal of Research in Reading, 32, 230–253. doi: 10.1111/j.1467-9817.2008.01387.x
  • Brands, A. M., Biessels, G. J., de Haan, E. H., Kappelle, L. J., & Kessels, R. P. (2005). The effects of type 1 diabetes on cognitive performance: A meta-analysis. Diabetes Care, 28, 726–735. doi: 10.2337/diacare.28.3.726
  • Brinley, J. F. (1965). Cognitive sets, speed and accuracy of performance in the elderly. In A. T. Welford, & J. E. Birren (Eds.), Behavior, aging and the nervous system (pp. 114–149). Springfield, IL: Thomas.
  • Brumm, V., Azen, C., Moats, R., Stern, A., Broomand, C., Nelson, M., & Koch, R. (2004). Neuropsychological outcome of subjects participating in the PKU Adult Collaborative Study: A preliminary review. Journal of Inherited Metabolic Disease, 27(5), 549–566. doi: 10.1023/B:BOLI.0000042985.02049.ff
  • Burlina, A., Bonafé, L., Ferrari, V., Suppiej, A., Zacchello, F., & Burlina, A. (2000). Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. Journal of Inherited Metabolic Disease, 23, 313–316. doi: 10.1023/A:1005694122277
  • Cerella, J. (1985). Information processing rates in the elderly. Psychological Bulletin, 98, 67–83. doi: 10.1037/0033-2909.98.1.67
  • Cerella, J., & Hale, J. (1994). The rise and fall in information-processing rates over the life span. Acta Psychological, 86, 109–197. doi: 10.1016/0001-6918(94)90002-7
  • Cerella, J., Poon, L. W., & Williams, D. M. (1980). Age and the complexity hypothesis. In L.W. Poon (Eds.), Aging in the 1980’s: Psychological issues (pp. 332–340). Washington, D.C.: American Psychological Association.
  • Channon, S., German, E., Cassina, C., & Lee, P. (2004). Executive functioning, memory, and learning in phenylketonuria. Neuropsychology, 18, 613–620. doi: 10.1037/0894-4105.18.4.613
  • Channon, S., Goodman, G., Zlotowitz, S., Mockler, C., & Lee, P. J. (2007). Effects of dietary management of phenylketonuria on long-term cognitive outcome. Archives of Disease in Childhood, 92, 213–218. doi: 10.1136/adc.2006.104786
  • Channon, S., Mockler, C., & Lee, P. (2005). Executive functioning and speed of processing in phenylketonuria. Neuropsychology, 19, 679–686. doi: 10.1037/0894-4105.19.5.679
  • Christ, S. E., Huijbregts, S. C. J., de Sonneville, L. M. J., & White, D. A. (2010). Executive function in early-treated phenylketonuria: Profile and underlying mechanisms. Molecular Genetics and Metabolism, 99(Suppl 1), S22–32. doi: 10.1016/j.ymgme.2009.10.007
  • Christ, S. E., Price, M. H., Bodner, K. E., Saville, C., Moffitt, A. J., & Peck, D. (2016). Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria. Molecular Genetics and Metabolism, 118(1), 3–8. doi:10.1016/j.ymgme.2016.02.004
  • Christ, S. E., White, D. A., Mandernach, T., & Keys, B. A. (2001). Inhibitory control across the life span. Developmental Neuropsychology, 20, 653–669. doi:10.1207/S15326942DN2003_7
  • Ciaramelli, E., Serino, A., Di Santantonio, A., & Ládavas, E. (2006). Central executive system impairment in traumatic brain injury. Brain and Cognition, 20, 23–32. doi:10.1080/02699050500309627
  • Cormack, F., Gray, A., Ballard, C., & Tovée, M. J. (2004). A failure of ‘Pop-Out’ in visual search tasks in dementia with Lewy Bodies as compared to Alzheimer’s and Parkinson’s disease. International Journal of Geriatric Psychiatry, 19, 763–772. doi: 10.1002/gps.1159
  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain (PhD thesis). McGill University, Montreal, Quebec, Canada.
  • DeRoche, K., & Welsh, M. (2008). Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: Intelligence and executive function. Developmental Neuropsychology, 33, 474–504. doi: 10.1080/87565640802101482
  • Dyer, C. A. (2000). Comments on the neuropathology of phenylketonuria. European Journal of Pediatrics, 159(Suppl 2), S107–8. doi: 10.1007/PL00014369
  • Erixon-Lindroth, N., Farde, L., Wahlin, T. B. R., Sovago, J., Halldin, C., & Bäckman, L. (2005). The role of the striatal dopamine transporter in cognitive aging. Psychiatry Research: Neuroimaging, 138, 1–12. doi: 10.1016/j.pscychresns.2004.09.005
  • Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M.-L., Molteni, M., Paganoni, P., … Mascetti, G. G. (2006). The relationship between visuo-spatial attention and non-word-reading in developmental dyslexia. Cognitive Neuropsychology, 23, 841–855. doi: 10.1080/02643290500483090
  • Feldmann, R., Denecke, J., Grenzebach, M., & Weglage, J. (2005). Frontal lobe-dependent functions in treated phenylketonuria : Blood phenylalanine concentrations and long-term deficits in adolescents and young adults. Journal of inherited metabolic disease, 28, 445–456. doi: 10.1007/s10545-005-0445-7
  • Ferraro, F. R. (1996). Cognitive slowing in closed-head injury. Brain and Cognition, 32, 429–440. doi: 10.1006/brcg.1996.0075
  • Folk, C. L., & Lincourt, A. E. (1996). The effects of age on guided conjunction search. Experimental Aging Research, 22, 99–118. doi: 10.1080/03610739608254000
  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179. doi: 10.1111/j.1467-9280.2006.01681.x
  • Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7, 237–241. doi: 10.1111/j.1467-9280.1996.tb00366.x
  • Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of Cerebral White Matter: A Review of MRI Findings. International Journal of Geriatric Psychiatry, 24, 109–117. doi: 10.1002/gps.2087
  • Hale, S., & Jansen, J. (1994). Global processing-time coefficients characterize individual differences in cognitive speed. Psychological Science, 5, 384–389. doi: 10.1111/j.1467-9280.1994.tb00290.x
  • Hale, S., & Myerson, J. (1996). Experimental evidence for differential slowing in the lexical and nonlexical domains. Aging, Neuropsychology, and Cognition, 3, 154–165. doi: 10.1080/13825589608256621
  • Hartas, D. (2011). British Families’ social backgrounds matter: Socio-economic factors, home learning and young children’s language, literacy and social outcomes. British Educational Research Journal, 37, 893–914. doi: 10.1080/01411926.2010.506945
  • Hommel, B., Li, K. Z., & Li, S. C. (2004). Visual search across the life span. Developmental Psycholology, 40, 545–558. doi: 10.1037/0012-1649.40.4.545
  • Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture naming: Experimental and computational studies. Cognition, 100, 464–482. doi: 10.1016/j.cognition.2005.02.006
  • Humphreys, G., Riddoch, J., Quinlan, P. T., Price, C. J., & Donnelly, N. (1992). Parallel pattern processing and visual agnosia. Canadian Journal of Psychology/Revue canadienne de psychologie, 46(3), 377–416. doi: 10.1037/h0084329
  • Janos, A. L., Grange, D. K., Steiner, R. D., & White, D. A. (2012). Processing speed and executive abilities in children with Pheylketonuria. Neuropsychology, 26, 735–743. doi: 10.1037/a0029419
  • Janzen, D., & Nguyen, M. (2010). Beyond executive function: Non-executive cognitive abilities in individuals with PKU. Molecular Genetics and Metabolism, 99(Suppl 1), S47–51. doi: 10.1016/j.ymgme.2009.10.009
  • Jenkins, L., Myerson, J., Joerding, J. A., & Hale, S. (2000). Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychology and aging, 15, 157–175. doi: 10.1037/0882-7974.15.1.157
  • Jurado, M. B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213–233. doi: 10.1007/s11065-007-9040-z
  • Kaasinen, V., & Rinne, J. O. (2002). Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neuroscience & Biobehavioral Reviews, 26, 785–793. doi: 10.1016/S0149-7634(02)00065-9
  • Kail, R. (1991a). Developmental change in speed of processing during childhood and adolescence. Psychological Bulletin, 109, 490–501. doi: 10.1037/0033-2909.109.3.490
  • Kail, R. (1991b). Processing time declines exponentially during childhood and adolescence. Developmental Psychology, 27, 256–259. doi: 10.1037/0012-1649.27.2.259
  • Kerchner, G., Racine, C., Hale, S., Wilheim, R., Laluz, V., Miller, B., & Kramer, J. (2012). Cognitive processing speed in older adults: Relationship with white matter integrity. PloS one, 7, 1–10. doi: 10.1371/journal.pone.0050425
  • Kongs, S. K., Thompson, L. L., Iverson, G. L., & Heaton, R. K. (2000). WCST-64: Wisconsin Card Sorting Test-64 card version, professional manual. Odessa, FL: Psychological Assessment Resources.
  • Landerl, K., & Wimmer, H. (2000). Deficits in phoneme segmentation are not the core problem in dyslexia. Evidence from German and English chidlren. Applied Psycholinguistics, 21, 243–262. doi: 10.1017/S0142716400002058
  • Landvogt, C., Mengel, E., Bartenstein, P., Buchholz, H. G., Schreckenberger, M., Siessmeier, T., … Ullrich, K. (2008). Reduced cerebral fluoro-L-dopamine uptake in adult patients suffering from phenylketonuria. Journal of Cerebral Blood Flow & Metabolism, 28, 824–831. doi: 10.1038/sj.jcbfm.9600571
  • Landy, K. M., Salmon, D. P., Filoteo, J. V., Heindel, W. C., Douglas Galasko, D., & Hamilton, J. M. (2015). Visual search in Dementia with Lewy Bodies and Alzheimer’s disease. Cortex, 73, 228–239. doi: 10.1016/j.cortex.2015.08.020
  • Lawrence, B., Myerson, J., & Hale, S. (1998). Differential decline of verbal and visuospatial processing speed across the adult life span. Aging, Neuropsychology, and Cognition (Neuropsychology, Development and Cognition: Section B), 5, 129–146. doi: 10.1076/anec.5.2.129.600
  • Leuzzi, V., Tosetti, M., Montanaro, D., Carducci, C., Artiola, C., Carducci, C., … Scarabino, T. (2007). The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy (1H MRS) study. Journal of inherited metabolic disease, 30, 209–216. doi: 10.1007/s10545-006-0399-4
  • Li, S.-C., Lindenberger, U., & Sikstrom, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5, 479–486. doi: 10.1016/S1364-6613(00)01769-1
  • Lykkelund, C., Nielsen, J. B., Lou, H. C., Rasmussen, V., Gerdes, A. M., Christensen, E., & Guttler, F. (1988). Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. European Journal of Pediatrics, 148, 238–245. doi: 10.1007/BF00441411
  • Madden, D. J., Bennett, I. J., Burzynska, A., Potter, G. G., Chen, N. K., & Song, A. W. (2012). Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822, 386–400. doi: 10.1016/j.bbadis.2011.08.003
  • Madden, D. J., Bennett, I. J., & Song, A. W. (2009). Cerebral white matter integrity and cognitive aging: Contributions from diffusion tensor imaging. Neuropsychological Review, 19, 415–435. doi: 10.1007/s11065-009-9113-2
  • McKean, C. (1972). The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Research, 47, 469–476. doi: 10.1016/0006-8993(72)90653-1
  • Moyle, J. J., Fox, A. M., Arthur, M., Bynevelt, M., & Burnett, J. R. (2007). Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychology Review, 17, 91–101. doi: 10.1007/s11065-007-9021-2
  • Moyle, J. J., Fox, A. M., Bynevelt, M., Arthur, M., & Burnett, J. R. (2007). A neuropsychological profile of off-diet adults with phenylketonuria. Journal of Clinical and Experimental Neuropsychology, 29, 436–441. doi: 10.1080/13803390600745829
  • Myerson, J., Hale, S., Wagstaff, D., Poon, L. W., & Smith, G. A. (1990). The information-loss model: A mathematical theory of age-related cognitive slowing. Psychological Review, 97(4), 475–487. doi:10.1037/0033-295X.97.4.475
  • Myerson, J., Hale, S., Zheng, Y., Jenkins, L., & Widaman, K. F. (2003). The difference engine: A model of diversity in speeded cognition. Psychonomic Bulletin & Review, 10(2), 262–288. doi:10.3758/BF03196491
  • Nardecchia, F., Manti, F., Chiarotti, F., Carducci, C., Carducci, C., & Leuzzi, V. (2015). Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: A longitudinal study. Molecular Genetics and Metabolism, 115, 84–90. doi: 10.1016/j.ymgme.2015.04.003
  • Nettelbeck, T., & Burns, N. R. (2010). Processing speed, working memory, and reasoning ability from childhood to old age. Personality and Individual Differences, 48, 379–384. doi: 10.1016/j.paid.2009.10.032
  • Oppenheim, G. M., Dell, G. S., & Schwartz, M. F. (2007). Cumulative semantic interference as learning. Brain and Language, 103(1-2), 175–176. doi:10.1016/j.bandl.2007.07.102
  • Palermo, L., Geberhiwot, T., MacDonald, A., Limback, E., Hall, S.K., & Romani, C. (2017). Cognitive Outcomes in early-treated adults with phenylketonuria (PKU): A comprehensive picture across domains. Neuropsychology, 31, 255–267. doi:10.1037/neu0000337
  • Pascucci, T., Giacovazzo, G., Andolina, D., Conversi, D., Cruciani, F., Cabib, S., & Puglisi-Allegra, S. (2012). In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: An investigation of the cortical dopamine deficit in phenylketonuria. Journal of inherited metabolic disease, 35, 1001–1009. doi: 10.1007/s10545-012-9473-2
  • Plude, D. J., & Doussard-Roosevelt, J. A. (1989). Aging, selective attention, and feature integration. Psychology and Aging, 4(1), 98–105. doi:10.1037/0882-7974.4.1.98
  • Ponsford, J., & Kinsella, G. (1992). Attentional deficits following closed-head injury. Journal of Clinical and Experimental Neuropsychology, 14, 822–838. doi: 10.1080/01688639208402865
  • Puglisi-Allegra, S., Cabib, S., Pascucci, T., Ventura, R., Cali, F., & Romano, V. (2000). Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. NeuroReport, 11, 1361–1364. doi: 10.1097/00001756-200004270-00042
  • Puopolo, C., Martelli, M., & Zoccolotti, P. (2013). Role of sensory modality and motor planning in the slowing of patients with traumatic brain injury: A meta-analysis. Neuroscience and Biobehavioral Reviews, 37, 2638–2648. doi: 10.1016/j.neubiorev.2013.08.013
  • Reitan, R. M., & Wolfson, D. (1985). The Halstead–Reitan Neuropsycholgical Test Battery: Therapy and clinical interpretation. Tucson, AZ: Neuropsychological Press.
  • Rodriguez-Aranda, C., & Martinussen, M. (2006). Age-related differences in performance of phonemic verbal fluency measured by controlled oral word association task (COWAT): A meta-analytic study. Developmental Neuropsychology, 30, 697–717. doi: 10.1207/s15326942dn3002_3
  • Romani, C., Olson, A., & Tsouknida, E. (2014). Order encoding and lexical learning: Contributions to developmental dyslexia. Quarterly Journal of Experimental Psychology, 68(1), 99–128. doi: 10.1080/17470218.2014.938666
  • Romani, C., Palermo, L., MacDonald, A., Limback, E., Hall, S. K., & Geberhiwot, T. (2017). The impact of phenylalanine levels on cognitive outcomes in adults with Phenylketonuria: Effects across tasks and developmental stages. Neuropsychology, 31(3), 242–254. doi:10.1037/neu0000336
  • Romani, C., Tsouknida, E., di Betta, A.-M., & Olson, A. (2011). Reduced attentional capacity, but normal processing speed and shifting of attention in developmental dyslexia: Evidence from a serial task. Cortex, 47, 715–733. doi: 10.1016/j.cortex.2010.05.008
  • Romine, C. B., & Reynolds, C. R. (2005). A model of the development of frontal lobe functioning: Findings from a Meta-Analysis. Applied Neuropsychology, 12, 190–201. doi: 10.1207/s15324826an1204_2
  • Rosen, W. G. (1980). Verbal fluency in aging and dementia. Journal of Clinical Neuropsychology, 2, 135–46. doi: 10.1080/01688638008403788
  • Ruskin, E. M., & Kaye, D. B. (1990). Developmental differences in visual processing: Strategy versus structure. Journal of Experimental Child Psychology, 50, 1–24. doi: 10.1016/0022-0965(90)90029-8
  • Sahakian, B. J., Jones, G. M. M., Levy, R., Gray, J. A., & Warburton, D. M. (1989). The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. British Journal of Psychiatry, 154, 797–800. doi: 10.1192/bjp.154.6.797
  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428. doi: 10.1037/0033-295X.103.3.403
  • Scarabino, T., Popolizio, T., Tosetti, M., Montanaro, D., Giannatempo, G. M., Terlizzi, R., … Salvolini, U. (2009). Phenylketonuria: White-matter changes assessed by 3.0-T magnetic resonance (MR) imaging, MR spectroscopy and MR diffusion. La Radiologia Medica, 114, 461–474. doi: 10.1007/s11547-009-0365-y
  • Scriver, C. R., & Kaufman, S. (2001). Hyperphenylalaninemia: Phenylalanine hydroxylase deficiency. In C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, B. Childs, & B. Vogelstein (Eds.), The metabolic and molecular bases of inherited disease (8th ed., pp. 1667–1724). New York: McGraw-Hill.
  • Shafto, M., & Tyler, L. (2014). Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 346, 583–587. doi: 10.1126/science.1254404
  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 298, 199–209. doi: 10.1098/rstb.1982.0082
  • Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44, 535–551. doi: 10.1016/j.paid.2007.09.015
  • Smith, G. A., & Brewer, N. (1995). Slowness and age: Speed-accuracy mechanisms. Psychology and Aging, 10, 238–247. doi: 10.1037/0882-7974.10.2.238
  • Smith, M. L., Klim, P., Mallozzi, E., & Hanley, W. B. (1996). A test of frontal-specificity hypothesis in the cognitive performance of adults with phenylketonuria. Developmental Neuropsychology, 12, 327–341. doi: 10.1080/87565649609540656
  • Soloway, A. H., Soloway, P. D., & Warner, V. D. (2013). Possible chemical initiators of cognitive dysfunction in phenylketonuria, Parkinson’s disease and Alzheimer’s disease. Medical Hypotheses, 81, 690–694. doi: 10.1016/j.mehy.2013.07.028
  • Starns, J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model. Psychology of Ageing, 25, 377–390. doi: 10.1037/a0018022
  • Starns, J., & Ratcliff, R. (2012). Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks. Psychonomic Bulletin Review, 19, 139–145. doi: 10.3758/s13423-011-0189-3
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi: 10.1037/h0054651
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi:10.1016/0010-0285(80)90005-5
  • Trites, R. (1977). Grooved Pegboard Test. Lafayette, IN: Lafayette Instrument.
  • Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., & Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia, 36, 499–504. doi: 10.1016/S0028-3932(97)00152-8
  • Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale—Revised. New York: Psychological Corporation.
  • Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: Harcourt Assessment.
  • Welford, A. T. (1965). Performance, biological mechanisms and age: A theoretical sketch. In A. T. Welford, & J. E. Birren (Eds.), Behavior, aging, and the nervous system (pp. 3–20). Springfield, IL: Charles C Thomas.
  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292. doi: 10.1037/0033-2909.120.2.272
  • Wolfe, J. M. (1994). Guided search 2.0. A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238. doi:10.3758/BF03200774

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.