1,508
Views
6
CrossRef citations to date
0
Altmetric
Articles

What tool representation, intuitive physics, and action have in common: The brain’s first-person physics engine

ORCID Icon & ORCID Icon
Pages 455-467 | Received 16 Jun 2022, Accepted 21 Jul 2022, Published online: 22 Aug 2022

References

  • Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679–685. https://doi.org/10.1016/S0960-9822(95)00133-3
  • Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332. https://doi.org/10.1073/pnas.1306572110
  • Beauchamp, M., Lee, K., Haxby, J., & Martin, A. (2003). FMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15(7), 991–1001. https://doi.org/10.1162/089892903770007380
  • Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion processing streams for manipulable objects and human movements. Neuron, 24(1), 149–159. https://doi.org/10.1016/S0896-6273(02)00642-6
  • Binkofski, F., Dohle, C., Posse, S., Stephan, K. M., Hefter, H., Seitz, R. J., & Freund, H. J. (1998). Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology, 50(5), 1253–1259. https://doi.org/10.1212/WNL.50.5.1253. https://www.ncbi.nlm.nih.gov/pubmed/9595971
  • Caramazza, A., McCloskey, M., & Green, B. (1981). Naive beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition, 9(2), 117–123. https://doi.org/10.1016/0010-0277(81)90007-X
  • Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478–484. https://doi.org/10.1006/nimg.2000.0635
  • Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189. https://doi.org/10.1007/s00221-003-1591-5
  • D'Ausilio, A., Pulvermuller, F., Salmas, P., Bufalari, I., Begliomini, C., & Fadiga, L. (2009). The motor somatotopy of speech perception. Current Biology, 19(5), 381–385. https://doi.org/10.1016/j.cub.2009.01.017
  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. https://doi.org/10.1016/j.neuron.2007.10.004
  • Dinstein, I., Thomas, C., Behrmann, M., & Heeger, D. J. (2008). A mirror up to nature. Current Biology, 18(1), R13–R18. https://doi.org/10.1016/j.cub.2007.11.004
  • di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180. https://doi.org/10.1007/BF00230027
  • Fischer, J. (2020). Naive physics: Building a mental model of how the world behaves. In M. Gazzaniga, G. R. Mangun, & D. Poeppel (Eds.), The cognitive neurosciences (VI) (pp. 779–785). MIT Press.
  • Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional neuroanatomy of intuitive physical inference. Proceedings of the National Academy of Sciences, 113(34), E5072–E5081. https://doi.org/10.1073/pnas.1610344113
  • Freud, E., Behrmann, M., & Snow, J. C. (2020). What does dorsal cortex contribute to perception? Open Mind, 4, 40–56. https://doi.org/10.1162/opmi_a_00033
  • Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–377. https://doi.org/10.3758/bf03193857
  • Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–479. https://doi.org/10.1080/02643290442000310
  • Gallivan, J. P., & Culham, J. C. (2015). Neural coding within human brain areas involved in actions. Current Opinion in Neurobiology, 33, 141–149. https://doi.org/10.1016/j.conb.2015.03.012
  • Gilden, D. L., & Proffitt, D. R. (1994). Heuristic judgment of mass ratio in two-body collisions. Perception & Psychophysics, 56(6), 708–720. https://doi.org/10.3758/BF03208364
  • Glenberg, A. M. (2015). Few believe the world is flat: How embodiment is changing the scientific understanding of cognition. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 69(2), 165–171. https://doi.org/10.1037/cep0000056
  • Goldenberg, G. (2014). Apraxia – the cognitive side of motor control. Cortex, 57, 270–274. https://doi.org/10.1016/j.cortex.2013.07.016
  • Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645–1655. https://doi.org/10.1093/brain/awp080
  • Gonzalez-Rothi, L., & Heilman, K. (1996). Liepmann (1900 and 1905): A definition of apraxia and a model of praxis. In C. Code, Y. Joanette, A. R. Lecours, & C.-W. Wallesch (Eds.), Classic cases in neuropsychology (pp. 118–128). Psychology Press.
  • Goodale, M. A. (2011). Transforming vision into action. Vision Research, 51(13), 1567–1587. https://doi.org/10.1016/j.visres.2010.07.027
  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. https://doi.org/10.1016/0166-2236(92)90344-8. https://www.ncbi.nlm.nih.gov/pubmed/1374953
  • Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154–156. https://doi.org/10.1038/349154a0
  • Gould, S., & Lewontin, R. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences, 205(1161), 581–598. https://doi.org/10.1098/rspb.1979.0086
  • Hauk, O. (2016). Only time will tell – why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin & Review, 23(4), 1072–1079. https://doi.org/10.3758/s13423-015-0873-9
  • Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301–307. https://doi.org/10.1016/s0896-6273(03)00838-9
  • Hetu, S., Gregoire, M., Saimpont, A., Coll, M. P., Eugene, F., Michon, P. E., & Jackson, P. L. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5), 930–949. https://doi.org/10.1016/j.neubiorev.2013.03.017
  • Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21(7), 1229–1243. https://doi.org/10.1162/jocn.2009.21189
  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.
  • Huber, L., Handwerker, D. A., Jangraw, D. C., Chen, G., Hall, A., Stüber, C., Gonzalez-Castillo, J., Ivanov, D., Marrett, S., Guidi, M., Goense, J., Poser, B. A., & Bandettini, P. A. (2017). High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. Neuron, 96(6), 1253–1263.e7. https://doi.org/10.1016/j.neuron.2017.11.005
  • Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041
  • Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17(1), 26–49. https://doi.org/10.1016/j.tics.2012.10.011
  • Kristensen, S., Garcea, F. E., Mahon, B. Z., & Almeida, J. (2016). Temporal frequency tuning reveals interactions between the dorsal and ventral visual streams. Journal of Cognitive Neuroscience, 28(9), 1295–1302. https://doi.org/10.1162/jocn_a_00969
  • Liberman, A., Cooper, F., Shankweiler, D., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461. https://doi.org/10.1037/h0020279
  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749. https://doi.org/10.1126/science.3283936. https://www.ncbi.nlm.nih.gov/pubmed/3283936
  • Lotto, A. J., Hickok, G. S., & Holt, L. L. (2009). Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences, 13(3), 110–114. https://doi.org/10.1016/j.tics.2008.11.008
  • Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2020). Broken physics: A conjunction-fallacy effect in intuitive physical reasoning. Psychological Science, 31(12), 1602–1611. https://doi.org/10.1177/0956797620957610
  • Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2021). Limits on simulation approaches in intuitive physics. Cognitive Psychology, 127, Article 101396. https://doi.org/10.1016/j.cogpsych.2021.101396
  • Mahon, B. (2020). The representation of tools in the human brain. In D. Poeppel, G. R. Mangun, & M. S. Gazzaniga (Eds.), The New cognitive neurosciences (pp. 764–776). MIT Press.
  • Mahon, B. (in press). Higher-order visual object representations: A functional analysis of their role in perception and action. In G. G. B. K. Haaland, B. Crosson, & T. King (Eds.), APA handbook of neuropsychology.
  • Mahon, B., Milleville, S., Negri, G., Rumiati, R., Caramazza, A., & Martin, A. (2007). Action-related properties shape object representations in the ventral stream. Neuron, 55(3), 507–520. https://doi.org/10.1016/j.neuron.2007.07.011
  • Mahon, B., & Wu, W. (2015). Cognitive penetration of the dorsal visual stream? In J. Zeimbekis & A. Raftopoulos (Eds.), The cognitive penetrability of perception: New philosophical perspectives (pp. 200–217). Oxford University Press.
  • Mahon, B. Z. (2020). Brain mapping: Understanding the ins and outs of brain regions. Current Biology, 30(9), R414–R416. https://doi.org/10.1016/j.cub.2020.03.061
  • Martin, A. (2016). GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin & Review, 23(4), 979–990. https://doi.org/10.3758/s13423-015-0842-3
  • Martin, A., & Weisberg, J. (2003). Neural foundations for understanding social and mechanical concepts. Cognitive Neuropsychology, 20(3–6), 575–587. https://doi.org/10.1080/02643290342000005
  • McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naive beliefs about the motion of objects. Science, 210(4474), 1139–1141. https://doi.org/10.1126/science.210.4474.1139
  • McCloskey, M., & Kohl, D. (1983). Naive physics: The curvilinear impetus principle and its role in interactions with moving objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(1), 146–156. https://doi.org/10.1037/0278-7393.9.1.146
  • McCloskey, M., Washburn, A., & Felch, L. (1983). Intuitive physics: The straight-down belief and its origin. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 636–649. https://doi.org/10.1037/0278-7393.9.4.636
  • Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16(1), 369–402. https://doi.org/10.1146/annurev.ne.16.030193.002101
  • Mitko, A., & Fischer, J. (2020). When it all falls down: The relationship between intuitive physics and spatial cognition. Cognitive Research: Principles & Implications, 5. https://doi.org/10.1186/s41235-020-00224-7
  • Navarro-Cebrian, A., & Fischer, J. (2022). Precise functional connections from the dorsal anterior cingulate cortex to the intuitive physics network in the human brain. European Journal of Neuroscience. https://doi.org/10.1111/ejn.15670
  • Negri, G. A., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z., & Caramazza, A. (2007). What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology, 24(8), 795–816. https://doi.org/10.1080/02643290701707412
  • Neupärtl, N., Tatai, F., & Rothkopf, C. (2022). Naturalistic embodied interactions elicit intuitive physical behavior in accordance with Newtonian physics. Cognitive Neuropsychology. https://doi.org/10.1080/02643294.2021.2008890
  • Noppeney, U., Price, C. J., Penny, W. D., & Friston, K. J. (2006). Two distinct neural mechanisms for category-selective responses. Cerebral Cortex, 16(3), 437–445. https://doi.org/10.1093/cercor/bhi123
  • Oberhuber, M., Hope, T. M. H., Seghier, M. L., Parker Jones, O., Prejawa, S., Green, D. W., & Price, C. J. (2016). Four functionally distinct regions in the left supramarginal gyrus support word processing. Cerebral Cortex, 26(11), 4212–4226. https://doi.org/10.1093/cercor/bhw251
  • Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008). The sound of actions in apraxia. Current Biology, 18(22), 1766–1772. https://doi.org/10.1016/j.cub.2008.09.061
  • Persichetti, A. S., Avery, J. A., Huber, L., Merriam, E. P., & Martin, A. (2020). Layer-specific contributions to imagined and executed hand movements in human primary motor cortex. Current Biology, 30(9), 1721–1725.e3. https://doi.org/10.1016/j.cub.2020.02.046
  • Pisella, L., Binkofski, F., Lasek, K., Toni, I., & Rossetti, Y. (2006). No double-dissociation between optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-manual integrations. Neuropsychologia, 44(13), 2734–2748. https://doi.org/10.1016/j.neuropsychologia.2006.03.027
  • Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology, 29(1–2), 34–55. https://doi.org/10.1080/02643294.2012.710600
  • Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron, 72(5), 692–697. https://doi.org/10.1016/j.neuron.2011.11.001
  • Pramod, R. T., Cohen, M. A., Tenenbaum, J. B., & Kanwisher, N. (2022). Invariant representation of physical stability in the human brain. Elife, 11. https://doi.org/10.7554/eLife.71736
  • Pulvermuller, F. (2013). Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits. Brain and Language, 127(1), 86–103. https://doi.org/10.1016/j.bandl.2013.05.015
  • Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: Recent findings and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644), 20130420. https://doi.org/10.1098/rstb.2013.0420
  • Rogalsky, C., Love, T., Driscoll, D., Anderson, S. W., & Hickok, G. (2011). Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system. Neurocase, 17(2), 178–187. https://doi.org/10.1080/13554794.2010.509318
  • Rothi, L. J. G., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8(6), 443–458. https://doi.org/10.1080/02643299108253382. Go to ISI://A1991GW56100003
  • Rumiati, R. I., Zanini, S., Vorano, L., & Shallice, T. (2001). A form of ideational apraxia as a delective deficit of contention scheduling. Cognitive Neuropsychology, 18(7), 617–642. https://doi.org/10.1080/02643290126375
  • Schenk, T. (2006). An allocentric rather than perceptual deficit in patient D.F. Nature Neuroscience, 9(11), 1369–1370. https://doi.org/10.1038/nn1784
  • Schneider, G. (1969). Two visual systems. Science, 163(3870), 895–902. https://doi.org/10.1126/science.163.3870.895
  • Schwartz, D. L., & Black, T. (1999). Inferences through imagined actions: Knowing by simulated doing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 116–136. https://doi.org/10.1037/0278-7393.25.1.116
  • Schwettmann, S., Tenenbaum, J. B., & Kanwisher, N. (2019). Invariant representations of mass in the human brain. Elife, 8. https://doi.org/10.7554/eLife.46619
  • Smith, K., Battaglia, P., & Vul, E. (2013). Consistent physics underlying ballistic motion prediction. Proceedings of the 35th Conference of the Cognitive Science Society (pp. 3426–3431).
  • Smith, K. A., Battaglia, P. W., & Vul, E. (2018). Different physical intuitions exist between tasks, not domains. Computational Brain and Behavior, 1–18.
  • Stasenko, A., Bonn, C., Teghipco, A., Garcea, F. E., Sweet, C., Dombovy, M., McDonough, J., & Mahon, B. Z. (2015). A causal test of the motor theory of speech perception: A case of impaired speech production and spared speech perception. Cognitive Neuropsychology, 32(2), 38–57. https://doi.org/10.1080/02643294.2015.1035702
  • Stasenko, A., Garcea, F. E., & Mahon, B. Z. (2013). What happens to the motor theory of perception when the motor system is damaged? Language and Cognition, 5(2–3), 225–238. https://doi.org/10.1515/langcog-2013-0016
  • Titchener, E. B. (1901). Experimental psychology: A manual of laboratory practice, vol. I: Qualitative experiments. Macmillan.
  • Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). MIT Press.
  • Washington, T., & Fischer, J. (2021). Intuitive physics does not rely on visual imagery. Journal of Vision, 21(9), 2894–2894. https://doi.org/10.1167/jov.21.9.2894
  • Weisberg, J., van Turennout, M., & Martin, A. (2007). A neural system for learning about object function. Cerebral Cortex, 17(3), 513–521. https://doi.org/10.1093/cercor/bhj176
  • Wurm, M. F., Caramazza, A., & Lingnau, A. (2017). Action categories in lateral occipitotemporal cortex are organized along sociality and transitivity. The Journal of Neuroscience, 37(3), 562–575. https://doi.org/10.1523/JNEUROSCI.1717-16.2016
  • Xu, Y. (2018). A tale of two visual systems: Invariant and adaptive visual information representations in the primate brain. Annual Review of Vision Science, 4(1), 311–336. https://doi.org/10.1146/annurev-vision-091517-033954
  • Yeatman, J. D., Weiner, K. S., Pestilli, F., Rokem, A., Mezer, A., & Wandell, B. A. (2014). The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. Proceedings of the National Academy of Sciences, 111(48), E5214–E5223. https://doi.org/10.1073/pnas.1418503111