6,686
Views
102
CrossRef citations to date
0
Altmetric
Original Articles

16 years research on lactic acid production with yeast – ready for the market?

, , &
Pages 229-256 | Published online: 15 Apr 2013

References

  • Abbott , D. , Suir , E. , van Maris , A. and Pronk , J. 2008 . Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae . Appl. Environ. Microbiol , 74 : 5759 – 5768 .
  • Abbott , D. , Suir , E. , Duong , G. , de Hulster , E. , Pronk , J. and van Maris , A. 2009a . Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae . Appl. Environ. Microbiol , 75 : 2320 – 2325 .
  • Abbott , D. , van den Brink , J. , Minneboo , I. , Pronk , J. and van Maris , A. 2009b . Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity . FEMS Yeast Res , 9 : 349 – 357 .
  • Abbott , D. , Zelle , R. , Pronk , J. and van Maris , A. 2009c . Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges . FEMS Yeast Res , 9 : 1123 – 36 .
  • Adachi , E , Torigoe , M. , Sugiyama , M. , Nikawa , J.I. and Shimidzu , K. 1998 . Modification of metabolic pathways of Saccharomyces cerevisiae by expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH . J. Ferment. Bioeng , 86 : 284 – 289 .
  • Andrade , R and Casal , M. 2001 . Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae . Fungal. Genet. Biol , 32 : 105 – 111 .
  • Auras , R. , Harte , B. and Selke , S. 2004 . An overview of polylactides as packaging materials . Macromol. Biosci , 4 : 835 – 864 .
  • Barnett , J. 2003 . Beginnings of microbiology and biochemistry: the contribution of yeast research . Microbiology , 149 : 557 – 567 .
  • Benninga , H.A. 1990 . A History of Lactic Acid Making , Dordrecht, The Netherlands : Kluyver Academic Publisher .
  • Bianchi , M. , Tizzani , L. , Destruelle , M. , Frontali , L. and Wésolowski-Louvel , M. 1996 . The 'petite-negative' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity . Mol. Microbiol , 19 : 27 – 36 .
  • Bianchi , M. , Brambilla , L. , Protani , F. , Liu , C. , Lievense , J. and Porro , D. 2001 . Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene . Appl. Environ. Microbiol , 67 : 5621 – 5625 .
  • Branduardi , P. , Valli , M. , Brambilla , L. , Sauer , M. , Alberghina , L. and Porro , D. 2004 . The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications . FEMS Yeast Res , 4 : 493 – 504 .
  • Branduardi , P. , Sauer , M. , De Gioia , L. , Zampella , G. , Valli , M , Mattanovich , D. and Porro , D. 2006 . Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export . Microb. Cell Fact , 5 : 4
  • Branduardi , P. , Fossati , T. , Sauer , M. , Pagani , R. , Mattanovich , D. and Porro , D. 2007 . Biosynthesis of vitamin C by yeast leads to increased stress resistance . PLoS ONE , 2 ( 10 ) : e1092
  • Branduardi , P. , Sauer , M. and Porro , D. 2008 . Improved Yeast Strains for Organic Acid Production . European Patent Application , EP08009693.6.
  • Burgstaller , W. 2006 . Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in Aspergillus and Penicillium . Microbiology , 152 : 887 – 893 .
  • Casal , M. , Paiva , S. , Andrade , R. , Gancedo , C. and Leão , C. 1999 . The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1 . J. Bacteriol , 181 : 2620 – 2623 .
  • Casal , M. , Paiva , S. , Queirós , O. and Soares-Silva , I. 2008 . Transport of carboxylic acids in yeasts . FEMS Microbiol. Rev , 32 : 974 – 994 .
  • Chelstowska , A. , Liu , Z. , Jia , Y. , Amberg , D. and Butow , R. 1999 . Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast . Yeast , 15 : 1377 – 1391 .
  • Cole , M. and Keenan , M. 1986 . Synergistic effects of weak-acid preservatives and pH on the growth of Zygosaccharomyces bailii . Yeast , 2 : 93 – 100 .
  • Colombié , S. , Dequin , S. and Sablayrolles , J.M. 2003 . Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene . Enzyme and Microbial Technology , 33 : 38 – 46 .
  • Colombié , S. and Sablayrolles , J. 2004 . Nicotinic acid controls lactate production by K1-LDH: a Saccharomyces cerevisiae strain expressing a bacterial LDH gene . J. Ind. Microbiol. Biotechnol , 31 : 209 – 215 .
  • Datta , R. and Henry , M. 2006 . Lactic acid: recent advances in products, processes and technologies - a review . Journal of Chemical Technology and Biotechnology , 81 : 1119 – 1129 .
  • Dequin S. and Barre P. (1994) Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology (New York) 12, 173–177.
  • Du , L. , Su , Y. , Sun , D. , Zhu , W. , Wang , J. , Zhuang , X. , Zhou , S. and Lu , Y. 2008 . Formic acid induces Yca1p-independent apoptosis-like cell death in the yeast Saccharomyces cerevisiae . FEMS Yeast Res , 8 : 531 – 539 .
  • Dundon , C.A. , Suominen , P. , Aristidou , A. , Rush , B.J. , Koivuranta , K. , Hause , B.M. , McMullin , T.W. and Roberg-Perez , K. 2009 . Yeast cells having disrupted pathway from dihydroxyacetone phosphate to glycerol . United States Patent Application , 20090053782
  • Eberhardt , I. , Cederberg , H. , Li , H. , König , S. , Jordan , F. and Hohmann , S. 1999 . Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity . Eur. J. Biochem , 262 : 191 – 201 .
  • Fiechter , A. , Fuhrmann , G. and Käppeli , O. 1981 . Regulation of glucose metabolism in growing yeast cells . Adv. Microb. Physiol , 22 : 123 – 183 .
  • Fitzpatrick , J.J. , Murphy , C. , Mota , F.M. and Pauli , P. 2003 . Impurity and cost considerations for nutrient supplementation of whey permeate fermentations to produce lactic acid for biodegradable plastics . International Dairy Journal , 13 : 575 – 580 .
  • Fonseca , G. , Heinzle , E. , Wittmann , C. and Gombert , A. 2008 . The yeast Kluyveromyces marxianus and its biotechnological potential . Appl. Microbiol. Biotechnol , 79 : 339 – 354 .
  • Garvie , E. 1980 . Bacterial lactate dehydrogenases . Microbiol.Rev , 44 : 106 – 139 .
  • Giannattasio , S. , Guaragnella , N. , Corte-Real , M. , Passarella , S. and Marra , E. 2005 . Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death . Gene , 354 : 93 – 98 .
  • González-Vara , Y.R.A , Vaccari , G. , Dosi , E. , Trilli , A. , Rossi , M and Matteuzzi , D. 2000 . Enhanced production of L-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR . Biotechnol. Bioeng , 67 : 147 – 156 .
  • Gutiérrez-Lomelí , M. , Torres-Guzmán , J. , González-Hernández , G. , Cira-Chávez , L. , Pelayo-Ortiz , C. and Ramírez-Córdova , J.J. 2008 . Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration . Antonie Van Leeuwenhoek , 93 : 363 – 371 .
  • Hause , B , Rajgarhia , V. and Suominen , P. 2009 . Methods and materials for the production of L-lactic acid in yeast . US Patent , US000007534597
  • Hirasawa , T. , Ookubo , A. , Yoshikawa , K. , Nagahisa , K. , Furusawa , C. , Sawai , H. and Shimizu , H. 2009 . Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in L: -lactate production by Saccharomyces cerevisiae . Appl. Microbiol. Biotechnol , 84 : 1149 – 59 .
  • Hofvendahl , K. and Hahn-Hägerdal , B. 2000 . Factors affecting the fermentative lactic acid production from renewable resources . Enzyme Microb. Technol , 26 : 87 – 107 .
  • Hohmann , S. and Cederberg , H. 1990 . Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5 . Eur. J. Biochem , 188 : 615 – 621 .
  • Hohmann , S. 1991a . Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae . J. Bacteriol , 173 : 7963 – 7969 .
  • Hohmann , S. 1991b . PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter . Curr. Genet , 20 : 373 – 378 .
  • Ikushima , S. , Fujii , T. , Kobayashi , O. , Yoshida , S. and Yoshida , A. 2009 . Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid . Biosci. Biotechnol. Biochem , 73 : 1818 – 1824 .
  • Ilmén , M. , Koivuranta , K. , Ruohonen , L. , Suominen , P. and Penttilä , M. 2007 . Efficient production of L-lactic acid from xylose by Pichia stipitis . Appl. Environ. Microbiol , 73 : 117 – 123 .
  • Ishida , N. , Saitoh , S. , Tokuhiro , K. , Nagamori , E. , Matsuyama , T. , Kitamoto , K. and Takahashi , H. 2005 . Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene . Appl. Environ. Microbiol , 71 : 1964 – 1970 .
  • Ishida , N. , Saitoh , S. , Ohnishi , T. , Tokuhiro , K. , Nagamori , E. , Kitamoto , K. and Takahashi , H. 2006a . Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid . Appl. Biochem. Biotechnol , 131 : 795 – 807 .
  • Ishida , N. , Saitoh , S. , Onishi , T. , Tokuhiro , K. , Nagamori , E. , Kitamoto , K. and Takahashi , H. 2006b . The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production . Biosci. Biotechnol.Biochem , 70 : 1148 – 1153 .
  • Ishida , N. , Suzuki , T. , Tokuhiro , K. , Nagamori , E. , Onishi , T. , Saitoh , S. , Kitamoto , K. and Takahashi , H. 2006c . D-lactic acid production by metabolically engineered Saccharomyces cerevisiae . J. Biosci. Bioeng , 101 : 172 – 177 .
  • Kale , G. , Kijchavengkul , T. , Auras , R. , Rubino , M. , Selke , S. and Singh , S. 2007 . Compostability of bioplastic packaging materials: an overview . Macromol. Biosci , 7 : 255 – 277 .
  • Kawahata , M. , Masaki , K. , Fujii , T. and Iefuji , H. 2006 . Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p . FEMS Yeast Res , 6 : 924 – 936 .
  • Leyva , J. and Peinado , J. 2005 . ATP requirements for benzoic acid tolerance in Zygosaccharomyces bailii . J. Appl. Microbiol , 98 : 121 – 126 .
  • Liu , CL. and Lievense , J. 2005 . Lactic acid producing yeast . US Patent application , : 20050112737
  • Makuc , J. , Paiva , S. , Schauen , M. , Krämer , R. , André , B. , Casal , M. , Leão , C. and Boles , E. 2001 . The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane . Yeast , 18 : 1131 – 1143 .
  • Matsushika , A. , Inoue , H. , Kodaki , T. and Sawayama , S. 2009 . Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives . Appl. Microbiol. Biotechnol , 84 : 37 – 53 .
  • Merezhinskaya , N. and Fishbein , W. 2009 . Monocarboxylate transporters: past, present, and future . Histol. Histopathol , 24 : 243 – 264 .
  • Miller , M. , Suominen , P. , Aristidou , A. , Hause , B.M. , Van Hoek , P. and Dundon , C.A. 2007 . Lactic acid-producing yeast cells having nonfunctional L-or D-lactate:ferricytochrome C oxidoreductase gene . International Patent Application ,
  • Narendranath , N , Thomas , K and Ingledew , W. 2001 . Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium . J. Ind. Microbiol. Biotechnol , 26 : 171 – 177 .
  • Nevoigt , E. 2008 . Progress in metabolic engineering of Saccharomyces cerevisiae . Microbiol Mol. Biol. Rev , 72 : 379 – 412 .
  • Octave , S. and Thomas , D. 2009 . Biorefinery: Toward an industrial metabolism . Biochimie , 91 : 659 – 664 .
  • Ohara , H. 2003 . Biorefinery . Appl. Microbiol. Biotechnol , 62 : 474 – 477 .
  • Ookubo , A. , Hirasawa , T. , Yoshikawa , K. , Nagahisa , K. , Furusawa , C. and Shimizu , H. 2008 . Improvement of L-lactate production by CYB2 gene disruption in a recombinant Saccharomyces cerevisiae strain under low pH condition . Biosci. Biotechnol. Biochem , 72 : 3063 – 3066 .
  • Osawa , F. , Fujii , T. , Nishida , T. , Tada , N. , Ohnishi , T. , Kobayashi , O. , Komeda , T. and Yoshida , S. 2009 . Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii . Yeast , 26 : 485 – 496 .
  • Pavlovich , S.S. , Mikhajlovic , V.M. , Vladimirovich , J.T. , Aleksandrovich , R.J. , Isaakovna , R.E. , Georgievna , T.N. , Aleksandrovna , V.M. , Mikhajlovna , A.A. and Georgievich , D.V. 2006 . Method for microbiological synthesis of lactic acid and recombinant strain of yeast Schizosaccharomyces pombe for its realization . Russian Patent Application , RU000002268304
  • Pecota , D. , Rajgarhia , V. and Da Silva , N. 2007 . Sequential gene integration for the engineering of Kluyveromyces marxianus . J. Biotechnol , 127 : 408 – 416 .
  • Piper , P. , Calderon , C. , Hatzixanthis , K. and Mollapour , M. 2001 . Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives . Microbiology , 147 : 2635 – 2642 .
  • Porro , D. , Brambilla , L. , Ranzi , B. , Martegani , E. and Alberghina , L. 1995 . Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid . Biotechnol. Prog , 11 : 294 – 298 .
  • Porro , D. , Bianchi , M. , Brambilla , L. , Menghini , R. , Bolzani , D. , Carrera , V. , Lievense , J. , Liu , C. , Ranzi , B. and Frontali , L. 1999 . Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl. Environ. Microbiol . 65 : 4211 – 4215 .
  • Porro , D. , Dato , L. and Branduardi , P. 2009 . Method for improving acid and low pH tolerance in yeast . International Patent Application , WO2008153890
  • Quintas , C. , Leyva , J. , Sotoca , R. , Loureiro-Dias , M. and Peinado , J. 2005 . A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements . Int. J. Food Microbiol , 100 : 125 – 130 .
  • Rajgarhia , V. , Hatzimanikatis , V. , Olson , S. , Carlson , T. , Starr , J.N. , Kolstad , J.J. and Eyal , A. 2007 . Methods for the synthesis of lactic acid using crabtree-negative yeast transformed with the lactate dehydrogenase gene . United States Patent , 7 ( 229 ) : 805
  • Ramil , E. , Agrimonti , C. , Shechter , E. , Gervais , M. and Guiard , B. 2000 . Regulation of the CYB2 gene expression: transcriptional co-ordination by the Hap1p, Hap2/3/4/5p and Adr1p transcription factors . Mol. Microbiol , 37 : 1116 – 1132 .
  • Saha , B. 2003 . Hemicellulose bioconversion . J. Ind. Microbiol. Biotechnol , 30 : 279 – 291 .
  • Saitoh , S. , Ishida , N. , Onishi , T. , Tokuhiro , K. , Nagamori , E. , Kitamoto , K. and Takahashi , H. 2005 . Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity . Appl. Environ. Microbiol , 71 : 2789 – 2992 .
  • Sauer , M. , Porro , D. , Mattanovich , D. and Branduardi , P. 2008 . Microbial production of organic acids: expanding the markets . Trends Biotechnol , 26 : 100 – 108 .
  • Schmitt , H. , Ciriacy , M. and Zimmermann , F. 1983 . The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level . Mol. Gen. Genet , 192 : 247 – 252 .
  • Schüller , C. , Mamnun , Y. , Mollapour , M. , Krapf , G. , Schuster , M. , Bauer , B. , Piper , P. and Kuchler , K. 2004 . Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae . Mol.Biol. Cell , 15 : 706 – 720 .
  • Skory , C. 2000 . Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae . Appl. Environ. Microbiol , 66 : 2343 – 2348 .
  • Skory , C. 2003 . Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene . J. Ind. Microbiol. Biotechnol , 30 : 22 – 27 .
  • Skory , C.D. , Hector , R.E. , Gorsich , S.W. and Rich , J.O. 2010 . Analysis of a functional lactate permease in the fungus Rhizopus . Enzyme and Microbial Technology , 46 : 43 – 50 .
  • Soares-Silva , I. , Schuller , D. , Andrade , R. , Baltazar , F. , CÁssio , F and Casal , M. 2003 . Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris . Biochem. J , 376 : 781 – 787 .
  • Thomas , K , Hynes , S. and Ingledew , W. 2002 . Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids . Appl Environ. Microbiol , 68 : 1616 – 1623 .
  • Tokuhiro , K , Ishida , N , Kondo , A and Takahashi , H. 2008 . Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface . Appl. Microbiol. Biotechnol , 79 : 481 – 488 .
  • Tokuhiro , K. , Ishida , N. , Nagamori , E. , Saitoh , S. , Onishi , T. , Kondo , A. and Takahashi , H. 2009 . Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene . Appl. Microbiol. Biotechnol , 82 : 883 – 890 .
  • Valli , M. , Sauer , M. , Branduardi , P. , Borth , N. , Porro , D. and Mattanovich , D. 2005 . Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry . Appl. Environ. Microbiol , 71 : 1515 – 1521 .
  • Valli , M , Sauer , M. , Branduardi , P. , Borth , N. , Porro , D. and Mattanovich , D. 2006 . Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH . Appl. Environ. Microbiol , 72 : 5492 – 5499 .
  • van Maris , A. , Konings , W. , van Dijken , J. and Pronk , J. 2004a . Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes . Metab. Eng , 6 : 245 – 255 .
  • van Maris , A. , Winkler , A. , Porro , D. , van Dijken , J. and Pronk , J. 2004b . Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export . Appl.Environ. Microbiol , 70 : 2898 – 2905 .
  • Venus , J. 2006 . Utilization of renewables for lactic acid fermentation . Biotechnol. J , 1 : 1428 – 1432 .
  • Villadsen , J. 2009 . The sugar industry - the cradle of modern bio-industry . Biotechnol. J , 4 : 620 – 631 .
  • Wee , Y.-J. , Kim , J.-N. and Ryu , H.-W. 2006 . Biotechnological Production of Lactic Acid and Its Recent Applications . Food Technology and Biotechnology , 44 : 163 – 172 .
  • Witte , V. , Krohn , U. and Emeis , C. 1989 . Characterization of yeasts with high L[+]-lactic acid production: lactic acid specific soft-agar overlay (LASSO) and TAFEpatterns . J. Basic Microbiol , 29 : 707 – 716 .
  • Ye , L. , Kruckeberg , A. , Berden , J. and van Dam , K. 1999 . Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter . J. Bacteriol , 181 : 4673 – 4675 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.