377
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update

, , &
Pages 126-160 | Received 11 Feb 2019, Accepted 16 Aug 2019, Published online: 03 Sep 2019

References

  • Abdallah, M. B., Trupiano, D., Polzella, A., De Zio, E., Sassi, M., Scaloni, A., … Scippa, G. S. (2018). Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology, 220, 83–95.
  • Acharjee, A., Chibon, P. Y., Kloosterman, B., America, T., Renaut, J., Maliepaard, C., & Visser, R. G. (2018). Genetical genomics of quality related traits in potato tubers using proteomics. BMC Plant Biology, 18(1), 20.
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18.
  • Alam, I., Sharmin, S. A., Kim, K. H., Kim, Y. G., Lee, J. J., Bahk, J. D., & Lee, B. H. (2011). Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean. Plant and Soil, 346(1–2), 45–62.
  • Alcázar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J., … Altabella, T. (2010). Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase 2 gene. Plant Physiology and Biochemistry, 48(7), 547–552.
  • Al-Obaidi, J. R., Rahmad, N., Hanafi, N. M., Halabi, M. F., & Al-Soqeer, A. A. (2017). Comparative proteomic analysis of male and female plants in Jojoba (Simmondsia chinensis) leaves revealed changes in proteins involved in photosynthesis, metabolism, energy, and biotic and abiotic stresses. Acta Physiologiae Plantarum, 39(8), 179.
  • Ashoub, A., Baeumlisberger, M., Neupaertl, M., Karas, M., & Brüggemann, W. (2015). Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Molecular Biology, 87(4–5), 459–471.
  • Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J., Siddique, K. H., & Nayyar, H. (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 41(11), 1148–1167.
  • Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313–339.
  • Bian, Y., Deng, X., Yan, X., Zhou, J., Yuan, L., & Yan, Y. (2017). Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Scientific Reports, 7, 46183.
  • Bogeat-Triboulot, M. B., Brosché, M., Renaut, J., Jouve, L., Le Thiec, D., Fayyaz, P., … Altman, A. (2007). Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiology, 143(2), 876–892.
  • Capell, T., Bassie, L., & Christou, P. (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences, 101(26), 9909–9914.
  • Carmo-Silva, A. E., Gore, M. A., Andrade-Sanchez, P., French, A. N., Hunsaker, D. J., & Salvucci, M. E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83, 1–11.
  • Chen, J., Gao, T., Wan, S., Zhang, Y., Yang, J., Yu, Y., & Wang, W. (2018). Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). International Journal of Molecular Sciences, 19(9), 2633.
  • Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., … He, H. (2014). Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1844(4), 818–828.
  • Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., & McCann, P. P. (1996). S-Adenosylmethionine and methylation. The FASEB Journal, 10(4), 471–480.
  • Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444–451.
  • Chmielewska, K., Rodziewicz, P., Swarcewicz, B., Sawikowska, A., Krajewski, P., Marczak, Ł., … Krystkowiak, K. (2016). Analysis of drought-induced proteomic and metabolomic changes in barley (Hordeum vulgare L.) leaves and roots unravels some aspects of biochemical mechanisms involved in drought tolerance. Frontiers in Plant Science, 7, 1108.
  • Chu, T. T. H., Hoang, T. G., Trinh, D. C., Bureau, C., Meynard, D., Vernet, A., … Gantet, P. (2018). Sub-cellular markers highlight intracellular dynamics of membrane proteins in response to abiotic treatments in rice. Rice, 11(1), 23.
  • Das, A., Eldakak, M., Paudel, B., Kim, D. W., Hemmati, H., Basu, C., & Rohila, J. S. (2016). Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. BioMed Research International, 2016, 1–23.
  • Dolatabadi, N., Toorchi, M., Valizadeh, M., & Bandehagh, A. (2018). The proteome response of salt-sensitive rapeseed (Brassica napus L.) genotype to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 17–23.
  • Du, J., Guo, S., Sun, J., & Shu, S. (2018). Proteomic and physiological analyses reveal the role of exogenous spermidine on cucumber roots in response to Ca(NO3)2 stress. Plant Molecular Biology, 97(1–2), 1–21.
  • Fadoul, H. E., El Siddig, M. A., Abdalla, A. W. H., & El Hussein, A. A. (2018). Physiological and proteomic analysis of two contrasting Sorghum bicolor genotypes in response to drought stress. Australian Journal of Crop Science, 12(9), 1543.
  • Faghani, E., Gharechahi, J., Komatsu, S., Mirzaei, M., Khavarinejad, R. A., Najafi, F., … Salekdeh, G. H. (2015). Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Journal of Proteomics, 114, 1–15.
  • Gharechahi, J., Sharifi, G., Komatsu, S., & Salekdeh, G. H. (2016). Proteomic analysis of crop plants under low temperature: A review of cold responsive proteins. In G. H. Salekdeh (Ed.), Agricultural proteomics (Vol. 2, pp. 97–127). Cham: Springer.
  • Ghatak, A., Chaturvedi, P., & Weckwerth, W. (2017). Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8, 757.
  • Ghosh, D., & Xu, J. (2014). Abiotic stress responses in plant roots: A proteomics perspective. Frontiers in Plant Science, 5, 6.
  • Gibbs, J., & Greenway, H. (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 30(1), 1–47.
  • Gygi, S. P., Rochon, Y., Franza, B. R., & Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19(3), 1720–1730.
  • Hlaváčková, I., Vítámvás, P., Šantrůček, J., Kosová, K., Zelenková, S., Prášil, I., … Ovesná, J. (2013). Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. International Journal of Molecular Sciences, 14(4), 8000–8024.
  • Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438.
  • Hu, L., Wang, Z., Du, H., & Huang, B. (2010). Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology, 167(2), 103–109.
  • Hu, R., Zhu, X., Xiang, S., Zhang, X., Liu, Z., Zhu, L., … Lai, J. (2018). Comparative proteomic analysis reveals differential protein and energy metabolisms from two tobacco cultivars in response to cold stress. Acta Physiologiae Plantarum, 40(1), 19.
  • Hýsková, V., Plisková, V., Červený, V., & Ryšlavá, H. (2017). NADP-dependent enzymes are involved in response to salt and hypoosmotic stress in cucumber plants. General Physiology and Biophysics, 36(3), 247–258.
  • Janicka, M., Wdowikowska, A., & Kłobus, G. (2018). Assay of plasma membrane H+-ATPase in plant tissues under abiotic stresses. In H. P. Mock, A. Matros, & K. Witzel (Eds.), Plant membrane proteomics: Vol. 1696. Methods in molecular biology (pp. 205–215). New York, NY: Humana Press.
  • Jedmowski, C., Ashoub, A., Beckhaus, T., Berberich, T., Karas, M., & Brüggemann, W. (2014). Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. International Journal of Proteomics, 2014, 1–10.
  • Ji, L., Zhou, P., Zhu, Y., Liu, F., Li, R., & Qiu, Y. (2017). Proteomic analysis of rice seedlings under cold stress. The Protein Journal, 36(4), 299–307.
  • Ji, W., Cong, R., Li, S., Li, R., Qin, Z., Li, Y., … Li, J. (2016). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Frontiers in Plant Science, 7, 573.
  • Julkowska, M. M., Hoefsloot, H. C., Mol, S., Feron, R., de Boer, G. J., Haring, M. A., & Testerink, C. (2014). Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiology, 166(3), 1387–1402.
  • Kholghi, M., Toorchi, M., Bandehagh, A., Ostendorp, A., Ostendorp, S., Hanhart, P., & Kehr, J. (2019). Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics, 1867(3), 227–236.
  • Koh, J., Chen, G., Yoo, M. J., Zhu, N., Dufresne, D., Erickson, J. E., … Chen, S. (2015). Comparative proteomic analysis of Brassica napus in response to drought stress. Journal of Proteome Research, 14(8), 3068–3081.
  • Komatsu, S., Hiraga, S., & Yanagawa, Y. (2011). Proteomics techniques for the development of flood tolerant crops. Journal of Proteome Research, 11(1), 68–78.
  • Kosová, K., Vítámvás, P., Prášil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74(8), 1301–1322.
  • Kosová, K., Vítámvás, P., Urban, M. O., Klíma, M., Roy, A., & Prášil, I. T. (2015). Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. International Journal of Molecular Sciences, 16(9), 20913–20942.
  • Kosová, K., Vítámvás, P., Urban, M. O., Prášil, I. T., & Renaut, J. (2018). Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Frontiers in Plant Science, 9, 122.
  • Kosová, K., Vítámvás, P., Planchon, S., Renaut, J., Vanková, R., & Prášil, I. T. (2013). Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. Journal of Proteome Research, 12(11), 4830–4845.
  • Krishnan, H. B., Natarajan, S. S., Oehrle, N. W., Garrett, W. M., & Darwish, O. (2017). Proteomic analysis of pigeonpea (Cajanus cajan) seeds reveals the accumulation of numerous stress-related proteins. Journal of Agricultural and Food Chemistry, 65(23), 4572–4581.
  • Kumar, M., Padula, M. P., Davey, P., Pernice, M., Jiang, Z., Sablok, G., … Ralph, P. J. (2017). Proteome analysis reveals extensive light stress-response reprogramming in the seagrass Zostera muelleri (Alismatales, Zosteraceae) metabolism. Frontiers in Plant Science, 7, 2023.
  • Kumar, N., Suyal, D. C., Sharma, I. P., Verma, A., & Singh, H. (2017). Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: A proteomic approach to understand heat stress response. 3 Biotech, 7(3), 205.
  • Kumar, R. R., Singh, K., Ahuja, S., Tasleem, M., Singh, I., Kumar, S., … Grover, M. (2019). Quantitative proteomic analysis reveals novel stress-associated active proteins (SAAPs) and pathways involved in modulating tolerance of wheat under terminal heat. Functional & Integrative Genomics, 19(2), 329–348.
  • Lee, B. R., Kim, K. Y., Jung, W. J., Avice, J. C., Ourry, A., & Kim, T. H. (2007). Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany, 58(6), 1271–1279.
  • Levitt, J. (1980). Responses of plants to environmental stress, volume 1: Chilling, freezing, and high temperature stresses. New York, NY: Academic Press.
  • Li, W., Zhao, F. A., Fang, W., Xie, D., Hou, J., Yang, X., … Lv, S. (2015). Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Frontiers in Plant Science, 6, 732.
  • Li, X., Zhou, Y., Yang, Y., Yang, S., Sun, X., & Yang, Y. (2015). Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLoS One, 10(4), e0124304.
  • Lin, C. C., Chao, Y. T., Chen, W. C., Ho, H. Y., Chou, M. Y., Li, Y. R., … Wu, F. H. (2019). Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proceedings of the National Academy of Sciences, 116(8), 3300–3309.
  • Liu, G. T., Ma, L., Duan, W., Wang, B. C., Li, J. H., Xu, H. G., … Wang, L. J. (2014). Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biology, 14(1), 110.
  • Liu, Y. N., Zhang, T. J., Lu, X. X., Ma, B. L., Ren, A., Shi, L., … Zhao, M. W. (2017). Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma Lucidum. Environmental Microbiology, 19(4), 1653–1668.
  • Longo, V., Kamran, R. V., Michaletti, A., Toorchi, M., Zolla, L., & Rinalducci, S. (2017). Proteomic and physiological response of spring barley leaves to cold stress. Cell, 6, 7.
  • Luan, H., Shen, H., Pan, Y., Guo, B., Lv, C., & Xu, R. (2018). Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach. Scientific Reports, 8(1), 9655.
  • Luo, M., Zhao, Y., Wang, Y., Shi, Z., Zhang, P., Zhang, Y., … Zhao, J. (2017). Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms. Journal of Proteome Research, 17(1), 141–153.
  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158.
  • Marriboina, S., Sengupta, D., Kumar, S., & Reddy, A. R. (2017). Physiological and molecular insights into the high salinity tolerance of Pongamia pinnata (L.) pierre, a potential biofuel tree species. Plant Science, 258, 102–111.
  • Mendiondo, G. M., Gibbs, D. J., Szurman‐Zubrzycka, M., Korn, A., Marquez, J., Szarejko, I., … Corbineau, F. (2016). Enhanced waterlogging tolerance in barley by manipulation of expression of the N‐end rule pathway E3 ligase PROTEOLYSIS 6. Plant Biotechnology Journal, 14(1), 40–50.
  • Meng, F., Luo, Q., Wang, Q., Zhang, X., Qi, Z., Xu, F., … Sun, G. (2016). Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.). Scientific Reports, 6, 23098.
  • Michaletti, A., Naghavi, M. R., Toorchi, M., Zolla, L., & Rinalducci, S. (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific Reports, 8(1), 5710.
  • Miller, M. A., O’Cualain, R., Selley, J., Knight, D., Karim, M. F., Hubbard, S. J., & Johnson, G. N. (2017). Dynamic acclimation to high light in Arabidopsis thaliana involves widespread reengineering of the leaf proteome. Frontiers in Plant Science, 8, 1239.
  • Mostek, A., Börner, A., Badowiec, A., & Weidner, S. (2015). Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. Journal of Plant Physiology, 174, 166–176.
  • Mu, Q., Zhang, W., Zhang, Y., Yan, H., Liu, K., Matsui, T., … Yang, P. (2017). iTRAQ-based quantitative proteomics analysis on rice anther responding to high temperature. International Journal of Molecular Sciences, 18(9), 1811.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
  • Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D., & Altmann, T. (2015). Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany, 66(18), 5467–5480.
  • Nanjo, Y., Skultety, L., Ashraf, Y., & Komatsu, S. (2010). Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. Journal of Proteome Research, 9(8), 3989–4002.
  • Oskuei, B. K., Yin, X., Hashiguchi, A., Bandehagh, A., & Komatsu, S. (2017). Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics, 1865(9), 1167–1177.
  • Pan, R., He, D., Xu, L., Zhou, M., Li, C., Wu, C., … Zhang, W. (2019). Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress. BMC Genomics, 20(1), 60.
  • Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research, 22(6), 4056–4075.
  • Park, H. J., Jeong, H. R., Roy, S. K., Kwon, S. J., Kim, K. H., Cho, S. W., & Woo, S. H. (2018). Growth characteristics and proteome expression of soybean seedling under waterlogging. Abstracts of Meeting of the CSSJ, 245, 166.
  • Paul, T., & Debnath, S. (2018). Recent researches on molecular breeding for spice crop improvement. In A. B. Sharangi (Ed.), Indian spices (pp. 317–339). Cham: Springer.
  • Prasad, T. K. (1996). Mechanisms of chilling‐induced oxidative stress injury and tolerance in developing maize seedlings: Changes in antioxidant system, oxidation of proteins and lipids, and protease activities. The Plant Journal, 10(6), 1017–1026.
  • Rodziewicz, P., Swarcewicz, B., Chmielewska, K., Wojakowska, A., & Stobiecki, M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 36(1), 1–19.
  • Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201–3212.
  • Sanders, G. J., & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In R. Aroca (Ed.), Plant responses to drought stress (pp. 199–229). Berlin, Heidelberg: Springer.
  • Sang, Q., Shan, X., An, Y., Shu, S., Sun, J., & Guo, S. (2017). Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Frontiers in Plant Science, 8, 120.
  • Sengupta, D., Kariyat, D., Marriboina, S., & Reddy, A. R. (2019). Pod‐wall proteomics provide novel insights into soybean seed‐filling process under chemical‐induced terminal drought stress. Journal of the Science of Food and Agriculture, 99(5), 2481–2493.
  • Sharma, P., Sharma, N., & Deswal, R. (2005). The molecular biology of the low‐temperature response in plants. Bioessays, 27(10), 1048–1059.
  • Shen, Q., Fu, L., Qiu, L., Xue, F., Zhang, G., & Wu, D. (2017). Time-course of ionic responses and proteomic analysis of a Tibetan wild barley at early stage under salt stress. Plant Growth Regulation, 81(1), 11–21.
  • Singh, Y. P., Nayak, A. K., Sharma, D. K., Singh, G., Mishra, V. K., & Singh, D. (2015). Evaluation of Jatropha curcas genotypes for rehabilitation of degraded sodic lands. Land Degradation & Development, 26(5), 510–520.
  • Sithtisarn, S., Yokthongwattana, K., Mahong, B., Roytrakul, S., Paemanee, A., Phaonakrop, N., & Yokthongwattana, C. (2017). Comparative proteomic analysis of Chlamydomonas reinhardtii control and a salinity-tolerant strain revealed a differential protein expression pattern. Planta, 246(5), 843–856.
  • Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., Arena, S., … Grillo, S. (2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biology, 17(1), 40.
  • Thangella, P. A., Pasumarti, S. N., Pullakhandam, R., Geereddy, B. R., & Daggu, M. R. (2018). Differential expression of leaf proteins in four cultivars of peanut (Arachis hypogaea L.) under water stress. 3 Biotech, 8(3), 157.
  • Tubiello, F. N., Soussana, J. F., & Howden, S. M. (2007). Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104(50), 19686–19690.
  • Uemura, M., Joseph, R. A., & Steponkus, P. L. (1995). Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiology, 109(1), 15–30.
  • Urban, M. O., Vašek, J., Klíma, M., Krtková, J., Kosová, K., Prášil, I. T., & Vítámvás, P. (2017). Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. Journal of Proteomics, 152, 188–205.
  • Vierstra, R. D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in Plant Science, 8(3), 135–142.
  • Vítámvás, P., Prášil, I. T., Kosová, K., Planchon, S., & Renaut, J. (2012). Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long‐term cold acclimation. Proteomics, 12(1), 68–85.
  • Vítámvás, P., Urban, M. O., Škodáček, Z., Kosová, K., Pitelková, I., Vítámvás, J., … Prášil, I. T. (2015). Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Frontiers in Plant Science, 6, 479.
  • Wang, R., Mei, Y., Xu, L., Zhu, X., Wang, Y., Guo, J., & Liu, L. (2018). Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot. Planta, 247(5), 1109–1122.
  • Wang, X., Dinler, B. S., Vignjevic, M., Jacobsen, S., & Wollenweber, B. (2015). Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Science, 230, 33–50.
  • Wang, X., Huang, M., Zhou, Q., Cai, J., Dai, T., Cao, W., & Jiang, D. (2016). Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 132, 175–182.
  • Wang, X., Khodadadi, E., Fakheri, B., & Komatsu, S. (2017). Organ-specific proteomics of soybean seedlings under flooding and drought stresses. Journal of Proteomics, 162, 62–72.
  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513.
  • Xu, E., Chen, M., He, H., Zhan, C., Cheng, Y., Zhang, H., & Wang, Z. (2017). Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice. Frontiers in Plant Science, 7, 2006.
  • Xu, J., Lan, H., Fang, H., Huang, X., Zhang, H., & Huang, J. (2015). Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response. PloS One, 10(3), e0120978.
  • Xu, X., Ji, J., Ma, X., Xu, Q., Qi, X., & Chen, X. (2016). Comparative proteomic analysis provides insight into the key proteins involved in cucumber (Cucumis sativus L.) adventitious root emergence under waterlogging stress. Frontiers in Plant Science, 7, 1515.
  • Yan, J., He, C., Wang, J., Mao, Z., Holaday, S. A., Allen, R. D., & Zhang, H. (2004). Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant and Cell Physiology, 45(8), 1007–1014.
  • Yin, X., Sakata, K., Nanjo, Y., & Komatsu, S. (2014). Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques. Journal of Proteomics, 106, 1–16.
  • Yu, F., Han, X., Geng, C., Zhao, Y., Zhang, Z., & Qiu, F. (2015). Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Proteomics, 15(1), 135–147.
  • Yu, H., Chen, X., Hong, Y. Y., Wang, Y., Xu, P., Ke, S. D., … Xiang, C. B. (2008). Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. The Plant Cell, 20(4), 1134–1151.
  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2–12.
  • Zenda, T., Liu, S., Wang, X., Jin, H., Liu, G., & Duan, H. (2018). Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms. International Journal of Molecular Sciences, 19(10), 3225.
  • Zhao, X. X., Huang, L. K., Zhang, X. Q., Li, Z., & Peng, Y. (2014). Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress. Molecules, 19(9), 13564–13576.
  • Zheng, X., Fan, S., Wei, H., Tao, C., Ma, Q., Ma, Q., … Yu, S. (2017). iTRAQ-based quantitative proteomic analysis reveals cold responsive proteins involved in leaf senescence in upland cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 18(9), 1984.
  • Zhou, J., Wang, J., Yu, J. Q., & Chen, Z. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science, 5, 174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.