192
Views
6
CrossRef citations to date
0
Altmetric
Research Article

5-HT/CGRP pathway and Sumatriptan role in Covid-19

, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Received 19 May 2022, Accepted 21 Jul 2022, Published online: 30 Aug 2022

References

  • Adam, G., Shiomi, T., Monica, G., Jarrod, S., Vincent, A., Becky, M., Tina, Z., & Jeanine, D. (2021). Suppression of cigarette smoke induced MMP1 expression by selective serotonin re-uptake inhibitors. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 35(7), e21519. https://doi.org/10.1096/fj.202001966RR
  • Afshari, K., Dehdashtian, A., Haddad, N. S., Jazaeri, S. Z., Ursu, D. C., Khalilzadeh, M., Haj-Mirzaian, A., Shakiba, S., Burns, T. C., Tavangar, S. M., Ghasemi, M., & Dehpour, A. R. (2021). Sumatriptan improves the locomotor activity and neuropathic pain by modulating neuroinflammation in rat model of spinal cord injury. Neurological Research, 43(1), 29–39. https://doi.org/10.1080/01616412.2020.1819090
  • Afzelius, P., & Nielsen, J. O. (2000). Sumatriptan increases the proliferation of peripheral blood mononuclear cells from HIV-infected individuals and healthy blood donors in vitro. APMIS: Acta pathologica, microbiologica. Et Immunologica Scandinavica, 108(1), 74–78. https://doi.org/10.1034/j.1600-0463.2000.d01-8.x
  • Aguirre-Siancas, E. E., Colona-Vallejos, E., Ruiz-Ramirez, E., Becerra-Bravo, M., & Alzamora-Gonzales, L. (2021). Substance P, proinflammatory cytokines, transient receptor potential vanilloid subtype 1 and COVID-19: A working hypothesis. Sustancia P, citocinas proinflamatorias, receptor de potencial transitorio vaniloide tipo 1 y COVID-19: Una hipótesis de trabajo. Neurologia (Barcelona, Spain), 36(2), 184–185. https://doi.org/10.1016/j.nrl.2020.10.004
  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Al-Hussaniy, H. A., Al-Harcan, N., Alexiou, A., & Batiha, G. E. (2022a). Neutrophil extracellular traps (NETs) and Covid-19: A new frontiers for therapeutic modality. International Immunopharmacology, 104, 108516. https://doi.org/10.1016/j.intimp.2021.108516
  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Alblihed, M., Cruz-Martins, N., & Batiha, G. E. (2021a). COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type II diabetes mellitus: The anti-inflammatory role of metformin. Frontiers in Medicine, 8, 644295. https://doi.org/10.3389/fmed.2021.644295
  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Alqarni, M., Cruz-Martins, N., & El-Saber Batiha, G. (2021b). Pleiotropic effects of tetracyclines in the management of COVID-19: Emerging perspectives. Frontiers in Pharmacology, 12, 642822. https://doi.org/10.3389/fphar.2021.642822
  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Alzahrani, K. J., Alexiou, A., & Batiha, G. E. (2021c). Niclosamide for Covid-19: Bridging the gap. Molecular Biology Reports, 48(12), 8195–8202. https://doi.org/10.1007/s11033-021-06770-7
  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Alzahrani, K. J., Cruz-Martins, N., & Batiha, G. E. (2021d). The potential role of neopterin in Covid-19: A new perspective. Molecular and Cellular Biochemistry, 476(11), 4161–4166. https://doi.org/10.1007/s11010-021-04232-z
  • Al-Kuraishy, H.M., Al-Gareeb, A.I., Butnariu, M., & Batiha, G.E. (2022d). The crucial role of prolactin-lactogenic hormone in Covid-19. Molecular and Cellular Biochemistry, 477(5), 1381–1392. doi:10.1007/s11010-022-04381-9.
  • Al-Kuraishy, H.M., Al-Gareeb, A.I., El-Bouseary, M.M., Sonbol, F.I., & Batiha, G.E. (2022c). Hyperviscosity syndrome in COVID-19 and related vaccines: Exploring of uncertainties. Clinical and Experimental Medicine, 24(May), 1–10. https://doi.org/10.1007/s10238-022-00836-x
  • Al-Kuraishy, H.M., Al-Gareeb, A.I., Onohuean, H., & El-Saber Batiha, G. (2022b). COVID-19 and erythrocrine function: The roller coaster and danger. International Journal of Immunopathology and Pharmacology, 36, 03946320221103151. https://doi.org/10.1177/03946320221103151
  • Al-Kuraishy, H. M., Al-Gareeb, A. I., Qusty, N., Cruz-Martins, N., & El-Saber Batiha, G. (2021e). Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulmonary Pharmacology & Therapeutics, 67, 102008. https://doi.org/10.1016/j.pupt.2021.102008
  • Al-Kuraishy, H. M., Hussien, N. R., Al-Naimi, M., Al-Buhadily, A. K., Al-Gareeb, A. I., & Lungnier, C. (2020). Is ivermectin–azithromycin combination the next step for COVID-19? Biomedical and Biotechnology Research Journal (BBRJ), 4(5), 101–103. doi:10.4103/bbrj.bbrj_109_20.
  • Al‐kuraishy, H.M., Al‐gareeb, A.I., Kaushik, A., Kujawska, M., & Batiha, G.E. (2022e). Ginkgo biloba in the management of the COVID‐19 severity. Archiv der Pharmazie, e2200188. https://doi.org/10.1002/ardp.202200188
  • Ala, M., Ghasemi, M., Mohammad Jafari, R., & Dehpour, A. R. (2021). Beyond its anti-migraine properties, Sumatriptan is an anti-inflammatory agent: A systematic review. Drug Development Research, 82(7), 896–906. https://doi.org/10.1002/ddr.21819
  • Araya, N., Miyatake, K., Tsuji, K., Katagiri, H., Nakagawa, Y., Hoshino, T., Onuma, H., An, S., Nishio, H., Saita, Y., & Sekiya, I. (2020, Jul). Intra-articular injection of pure platelet-rich plasma is the most effective treatment for joint pain by modulating synovial inflammation and calcitonin gene-related peptide expression in a rat arthritis model. The American Journal of Sports Medicine, 48(8), 2004–2012. https://doi.org/10.1177/0363546520924011
  • Attademo, L., & Bernardini, F. (2021). Are dopamine and serotonin involved in COVID-19 pathophysiology? The European Journal of Psychiatry, 35(1), 62–63. https://doi.org/10.1016/j.ejpsy.2020.10.004
  • Babes, A., Neacsu, C. D., Fischer, M. J., & Messlinger, K. (2019). Sumatriptan activates TRPA1. Cephalalgia Reports, 2.
  • Batiha, G. E., Gari, A., Elshony, N., Shaheen, H. M., Abubakar, M. B., Adeyemi, S. B., & Al-Kuraishy, H. M. (2021). Hypertension and its management in COVID-19 patients: The assorted view. International Journal of Cardiology: Cardiovascular Risk and Prevention, 11, 200121. https://doi.org/10.1016/j.ijcrp.2021.200121
  • Bialowas, S., Hagbom, M., Nordgren, J., Karlsson, T., Sharma, S., Magnusson, K. E., & Svensson, L. (2016). Rotavirus and Serotonin cross-talk in diarrhoea. PloS One, 11(7), e0159660. https://doi.org/10.1371/journal.pone.0159660
  • Biohaven Company Website. (2020). Biohaven company receives FDA may proceed letter to begin phase 2 trial of intranasal vazegepant to treat lung inflammation after COVID-19 infection. Retrieved April 09, 2020, from https://www.biohavenpharma.com/investors/news-events/press-releases/04-09-2020.
  • Bókkon, I., Kapócs, G., Vucskits, A., Erdöfi-Szabó, A., Vagedes, J., Scholkmann, F., & Szöke, H. (2021). COVID-19: The significance of platelets, mitochondria, vitamin D, Serotonin and the gut microbiota. Current Medicinal Chemistry, 28(37), 7634–7657. https://doi.org/10.2174/0929867328666210526100147
  • Bomsel, M., & Ganor, Y. (2017). Calcitonin gene-related peptide induces HIV-1 proteasomal degradation in mucosal Langerhans cells. Journal of Virology, 91(23), e01205–17. https://doi.org/10.1128/JVI.01205-17
  • Bomsel, M., Lopalco, L., Uberti-Foppa, C., Siracusano, G., & Ganor, Y. (2019). Short communication: decreased plasma calcitonin gene-related peptide as a novel biomarker for HIV-1 disease progression. AIDS Research and Human Retroviruses, 35(1), 52–55. https://doi.org/10.1089/aid.2018.0210
  • Bousquet, J., Czarlewski, W., Zuberbier, T., Mullol, J., Blain, H., Cristol, J. P., De La Torre, R., Le Moing, V., Pizarro Lozano, N., Bedbrook, A., Agache, I., Akdis, C. A., Canonica, G. W., Cruz, A. A., Fiocchi, A., Fonseca, J. A., Fonseca, S., Gemicioğlu, B., Haahtela, T., … Anto, J. M. (2021). Spices to control COVID-19 symptoms: Yes, but not only…. International Archives of Allergy and Immunology, 182(6), 489–495. https://doi.org/10.1159/000513538
  • Brar, Y., Hosseini, S. A., & Saadabadi, A. (2022). Sumatriptan. StatPearls Publishing.
  • C, T.-H.-P. (2010). Does Sumatriptan cross the blood-brain barrier in animals and man? The Journal of Headache and Pain, 11(1), 5–12. https://doi.org/10.1007/s10194-009-0170-y
  • Champion, H. C., Bivalacqua, T. J., Toyoda, K., Heistad, D. D., Hyman, A. L., & Kadowitz, P. J. (2000). In vivo gene transfer of prepro-calcitonin gene-related peptide to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse. Circulation, 101(8), 923–930. https://doi.org/10.1161/01.cir.101.8.923
  • Dakhama, A., Park, J. W., Taube, C., El Gazzar, M., Kodama, T., Miyahara, N., Takeda, K., Kanehiro, A., Balhorn, A., Joetham, A., Loader, J. E., Larsen, G. L., & Gelfand, E. W. (2005). Alteration of airway neuropeptide expression and development of airway hyperresponsiveness following respiratory syncytial virus infection. American Journal of Physiology—Lung Cellular and Molecular Physiology, 288(4), L761–L770. https://doi.org/10.1152/ajplung.00143.2004
  • De Deurwaerdère, P., Bharatiya, R., Chagraoui, A., & DiGiovanni, G. (2020). Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology, 168, 107967. https://doi.org/10.1016/j.neuropharm.2020.107967
  • de Las Casas-Engel, M., & Corbí, A. L. (2014). Serotonin modulation of macrophage polarization: Inflammation and beyond. Advances in Experimental Medicine and Biology, 824, 89–115. https://doi.org/10.1007/978-3-319-07320-0_9
  • Dehpour, A. R., Yousefi-Manesh, H., Sheibani, M., Sadeghi, M. A., Hemmati, S., Noori, T., & Shirooie, S. (2022). Evaluation of anti-inflammatory and antioxidant effects of Sumatriptan on carbon tetrachloride-induced hepatotoxicity in rats. Drug Research, 72(1), 41–46. https://doi.org/10.1055/a-1589-5395
  • Deng, T., Yang, L., Zheng, Z., Li, Y., Ren, W., Wu, C., & Guo, L. (2017). Calcitonin gene‑related peptide induces IL‑6 expression in RAW264.7 macrophages mediated by mmu_circrna_007893. Molecular Medicine Reports, 16(6), 9367–9374. https://doi.org/10.3892/mmr.2017.7779
  • Duan, J. X., Zhou, Y., Zhou, A. Y., Guan, X. X., Liu, T., Yang, H. H., Xie, H., & Chen, P. (2017). Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro. Molecular Immunology, 91, 105–113. https://doi.org/10.1016/j.molimm.2017.08.020
  • Duerschmied, D., Suidan, G. L., Demers, M., Herr, N., Carbo, C., Brill, A., Cifuni, S. M., Mauler, M., Cicko, S., Bader, M., Idzko, M., Bode, C., & Wagner, D. D. (2013). Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood, 121(6), 1008–1015. https://doi.org/10.1182/blood-2012-06-437392
  • Durham, P. L., & Russo, A. F. (2003). Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(3), 807–815. https://doi.org/10.1523/JNEUROSCI.23-03-00807.2003
  • Elphick, G. F., Querbes, W., Jordan, J. A., Gee, G. V., Eash, S., Manley, K., Dugan, A., Stanifer, M., Bhatnagar, A., Kroeze, W. K., Roth, B. L., & Atwood, W. J. (2004). The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science (New York, NY), 306(5700), 1380–1383. https://doi.org/10.1126/science.1103492
  • Evans, M. S., Cheng, X., Jeffry, J. A., Disney, K. E., & Premkumar, L. S. (2012). Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache: The Journal of Head and Face Pain, 52(5), 773–784. https://doi.org/10.1111/j.1526-4610.2011.02053.x
  • Eyssleein, V., Sternini, C., Cominelli, F., & Nast, C. (1991). Putative mediators in inflammatory bowel disease: Substance P and calcitonin gene-related peptide. In W. Snape, S. Collins (Eds.), Effects of immune cells and inflammation on smooth muscle and enteric nerves (pp. 281–293). CRC.
  • Falkenberg, K., Rønde Bjerg, H., Yamani, N., & Olesen, J. (2020). Sumatriptan does not antagonize CGRP-induced symptoms in healthy volunteers. Headache: The Journal of Head and Face Pain, 60(4), 665–676. https://doi.org/10.1111/head.13747
  • Ganor, Y., Drillet Dangeard, A. S., & Bomsel, M. (2015). Calcitonin gene-related peptide inhibits human immunodeficiency type 1 transmission by Langerhans cells via an autocrine/paracrine feedback mechanism. Acta physiologica (Oxford, England), 213(2), 432–441. https://doi.org/10.1111/apha.12366.
  • Ganor, Y., Drillet Dangeard, A. S., Lopalco, L., Tudor, D., Tambussi, G., Delongchamps, N. B., Zerbib, M., & Bomsel, M. (2013). Calcitonin gene-related peptide inhibits Langerhans cell-mediated HIV-1 transmission. The Journal of Experimental Medicine, 210(11), 2161–2170. https://doi.org/10.1084/jem.20122349
  • Goolaerts, A., Roux, J., Ganter, M. T., Shlyonsky, V., Chraibi, A., Stéphane, R., Mies, F., Matthay, M. A., Naeije, R., Sariban-Sohraby, S., Howard, M., & Pittet, J. F. (2010). Serotonin decreases alveolar epithelial fluid transport via a direct inhibition of the epithelial sodium channel. American Journal of Respiratory Cell and Molecular Biology, 43(1), 99–108. https://doi.org/10.1165/rcmb.2008-0472OC
  • Guo, X., Chen, D., An, S., & Wang, Z. (2020). ChIP-Seq profiling identifies histone deacetylase 2 targeting genes involved in immune and inflammatory regulation induced by calcitonin gene-related peptide in microglial cells. Journal of Immunology Research, 4384696. https://doi.org/10.1155/2020/4384696
  • Ha, S., Jin, B., Clemmensen, B., Park, P., Mahboob, S., Gladwill, V., Lovely, F. M., Gottfried-Blackmore, A., Habtezion, A., Verma, S., & Ro, S. (2021). Serotonin is elevated in COVID-19-associated diarrhoea. Gut, 70(10), 2015–2017. https://doi.org/10.1136/gutjnl-2020-323542
  • Hamed, M., & Hagag, R. S. (2020). The possible immunoregulatory and anti-inflammatory effects of selective serotonin re-uptake inhibitors in coronavirus disease patients. Medical Hypotheses, 144, 110140. https://doi.org/10.1016/j.mehy.2020.110140
  • Han, D. (2019). Association of serum levels of calcitonin gene-related peptide and cytokines during migraine attacks. Annals of Indian Academy of Neurology, 22(3), 277–281. https://doi.org/10.4103/aian.AIAN_371_18
  • Hansen, E. K., & Olesen, J. (2017). Towards a pragmatic human migraine model for drug testing: 2. Isosorbide-5-mononitrate in healthy individuals. Cephalalgia: An International Journal of Headache, 37(1), 11–19. https://doi.org/10.1177/0333102416636095
  • He, Y., Cai, X., Liu, H., Conde, K. M., Xu, P., Li, Y., Wang, C., Yu, M., He, Y., Liu, H., Liang, C., Yang, T., Yang, Y., Yu, K., Wang, J., Zheng, R., Liu, F., Sun, Z., Heisler, L., … Xu, Y. (2021). 5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. Molecular Psychiatry, 26(12), 7211–7224. https://doi.org/10.1038/s41380-021-01220-z
  • Henson, B., Hollingsworth, H., Nevois, E., & Herndon, C. (2020). Calcitonin gene-related peptide (CGRP) antagonists and their use in migraines. Journal of Pain & Palliative Care Pharmacotherapy, 34(1), 22–31. https://doi.org/10.1080/15360288.2019.1690616
  • Iannone, L. F., Geppetti, P., Chiarugi, A., & De Cesaris, F. (2021). COVID-19 pneumonia during long-term migraine prophylaxis with fremanezumab: A case report. Internal and Emergency Medicine, 16(8), 2309–2311. https://doi.org/10.1007/s11739-021-02787-9
  • Islam, M. Z., Kojima, S., Sameshima, M., Obi, T., Yamazaki-Himeno, E., Shiraishi, M., & Miyamoto, A. (2021). Vasomotor effects of noradrenaline, 5-hydroxytryptamine, angiotensin II, bradykinin, histamine, and acetylcholine on the bat (Rhinolophus ferrumequinum) basilar artery. Comparative biochemistry and physiology. Toxicology & Pharmacology : CBP, 250, 109190. https://doi.org/10.1016/j.cbpc.2021.109190
  • Jiang, L., Zhang, Y., Jing, F., Long, T., Qin, G., Zhang, D., Chen, L., & Zhou, J. (2021). P2X7R-mediated autophagic impairment contributes to central sensitization in a chronic migraine model with recurrent nitroglycerin stimulation in mice. Journal of Neuroinflammation, 18(1), 5. https://doi.org/10.1186/s12974-020-02056-0
  • Karsan, N., & Goadsby, P. J. (2015). CGRP mechanism antagonists and migraine management. Current Neurology and Neuroscience Reports, 15(5), 25. https://doi.org/10.1007/s11910-015-0547-z
  • Kee, Z., Kodji, X., & Brain, S. D. (2018). The role of calcitonin gene related peptide (CGRP) in neurogenic vasodilation and its cardioprotective effects. Frontiers in Physiology, 9, 1249. https://doi.org/10.3389/fphys.2018.01249
  • Keegan, A., Morecroft, I., Smillie, D., Hicks, M. N., & MacLean, M. R. (2001). Contribution of the 5-HT(1B) receptor to hypoxia-induced pulmonary hypertension: Converging evidence using 5-HT(1B)-receptor knockout mice and the 5-HT(1B/1D)-receptor antagonist GR127935. Circulation Research, 89(12), 1231–1239. https://doi.org/10.1161/hh2401.100426
  • Keith, P., Saint-Jour, M., Pusey, F., Hodges, J., Jalali, F., & Scott, L. K. (2021). Unprovoked serotonin syndrome-like presentation of SARS-CoV-2 infection: A small case series. SAGE Open Medical Case Reports, 9, 2050313X211032089. https://doi.org/10.1177/2050313X211032089
  • Khalilzadeh, M., Panahi, G., Rashidian, A., Hadian, M. R., Abdollahi, A., Afshari, K., Shakiba, S., Norouzi-Javidan, A., Rahimi, N., Momeny, M., & Dehpour, A. R. (2018). The protective effects of Sumatriptan on vincristine - induced peripheral neuropathy in a rat model. Neurotoxicology, 67, 279–286. https://doi.org/10.1016/j.neuro.2018.06.012
  • Kilinc, E., Tore, F., Dagistan, Y., & Bugdayci, G. (2020). Thymoquinone inhibits neurogenic inflammation underlying migraine through modulation of calcitonin gene-related peptide release and stabilization of meningeal mast cells in glyceryltrinitrate-induced migraine model in rats. Inflammation, 43(1), 264–273. https://doi.org/10.1007/s10753-019-01115-w
  • Kim, J. S., Lee, J. Y., Yang, J. W., Lee, K. H., Effenberger, M., Szpirt, W., Kronbichler, A., & Shin, J. I. (2021). Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 11(1), 316–329. https://doi.org/10.7150/thno.49713
  • Kumar, A., Potts, J. D., & DiPette, D. J. (2019). Protective role of α-calcitonin gene-related peptide in cardiovascular diseases. Frontiers in Physiology, 10, 821. https://doi.org/10.3389/fphys.2019.00821
  • Lang, P. A., Contaldo, C., Georgiev, P., El-Badry, A. M., Recher, M., Kurrer, M., Cervantes-Barragan, L., Ludewig, B., Calzascia, T., Bolinger, B., Merkler, D., Odermatt, B., Bader, M., Graf, R., Clavien, P. A., Hegazy, A. N., Löhning, M., Harris, N. L., Ohashi, P. S., … Lang, K. S. (2008). Aggravation of viral hepatitis by platelet-derived serotonin. Nature Medicine, 14(7), 756–761. https://doi.org/10.1038/nm1780
  • Lange, M., Enkhbaatar, P., Traber, D. L., Cox, R. A., Jacob, S., Mathew, B. P., Hamahata, A., Traber, L. D., Herndon, D. N., & Hawkins, H. K. (2009). Role of calcitonin gene-related peptide (CGRP) in ovine burn and smoke inhalation injury. Journal of Applied Physiology, 107(1), 176–184. https://doi.org/10.1152/japplphysiol.00094.2009
  • Lee, E., Ghafoor, N., Jefri, M., Black, A. D., Calello, D. P., & Santos, C. D. (2022). Acute coronary syndrome and transient global amnesia with Sumatriptan. The American Journal of Emergency Medicine, 53, 283.e1–283.e3. https://doi.org/10.1016/j.ajem.2021.09.019
  • Leira, Y., Ameijeira, P., Domínguez, C., López‐Arias, E., Ávila‐Gómez, P., Pérez‐mato, M., Sobrino, T., Campos, F., D’Aiuto, F., Leira, R., & Blanco, J. (2019, Oct). Periodontal inflammation is related to increased serum calcitonin gene‐related peptide levels in patients with chronic migraine. Journal of Periodontology, 90(10), 1088–1095. https://doi.org/10.1002/JPER.19-0051
  • Li, N., Ghia, J. E., Wang, H., McClemens, J., Cote, F., Suehiro, Y., Mallet, J., & Khan, W. I. (2011). Serotonin activates dendritic cell function in the context of gut inflammation. The American Journal of Pathology, 178(2), 662–671. https://doi.org/10.1016/j.ajpath.2010.10.028
  • Liviero, F., Campisi, M., Mason, P., & Pavanello, S. (2021). Transient receptor potential vanilloid subtype 1: Potential role in infection, susceptibility, symptoms and treatment of COVID-19. Frontiers in Medicine, 8, 753819. https://doi.org/10.3389/fmed.2021.753819
  • Lugnier, C., Al-Kuraishy, H. M., & Rousseau, E. (2021). PDE4 inhibition as a therapeutic strategy for improvement of pulmonary dysfunctions in Covid-19 and cigarette smoking. Biochemical Pharmacology, 185, 114431. https://doi.org/10.1016/j.bcp.2021.114431
  • Luo, D., Zhang, Y. W., Peng, W. J., Peng, J., Chen, Q. Q., Li, D., Deng, H. W., & Li, Y. J. (2008). Transient receptor potential vanilloid 1-mediated expression and secretion of endothelial cell-derived calcitonin gene-related peptide. Regulatory Peptides, 150(1–3), 66–72. https://doi.org/10.1016/j.regpep.2008.05.007
  • Malczyk, M., Erb, A., Veith, C., Ghofrani, H. A., Schermuly, R. T., Gudermann, T., Dietrich, A., Weissmann, N., & Sydykov, A. (2017). The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Frontiers in Immunology, 8, 707. https://doi.org/10.3389/fimmu.2017.00707
  • Margolis, K. G., Stevanovic, K., Li, Z., Yang, Q. M., Oravecz, T., Zambrowicz, B., Jhaver, K. G., Diacou, A., & Gershon, M. D. (2014). Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut, 63(6), 928–937. https://doi.org/10.1136/gutjnl-2013-304901
  • Masri, M., Mantri, C. K., Rathore, A., & John, A. (2019). Peripheral serotonin causes dengue virus-induced thrombocytopenia through 5HT2 receptors. Blood, 133(21), 2325–2337. https://doi.org/10.1182/blood-2018-08-869156
  • Matsui, S., Tanaka, M., Kamiyoshi, A., Sakurai, T., Ichikawa-Shindo, Y., Kawate, H., Dai, K., Cui, N., Wei, Y., Tanaka, M., Kakihara, S., Nakamura, K., Yamauchi, A., Ishida, K., Tanaka, S., Kawamata, M., & Shindo, T. (2019). Endogenous calcitonin gene-related peptide deficiency exacerbates postoperative lymphedema by suppressing lymphatic capillary formation and M2 macrophage accumulation. The American Journal of Pathology, 189(12), 2487–2502. https://doi.org/10.1016/j.ajpath.2019.08.011
  • Mengod, G., Cortės, R., Vilaró, M. T., & Hoyer, D. (2010). Distribution of 5-HT receptors in the central nervous system. Handbook of Behavioral Neuroscience, 21, 123–138. https://doi.org/10.1016/S1569-7339(10)70074-6
  • Morecroft, I., Pang, L., Baranowska, M., Nilsen, M., Loughlin, L., Dempsie, Y., Millet, C., & MacLean, M. R. (2010). In vivo effects of a combined 5-HT1B receptor/sert antagonist in experimental pulmonary hypertension. Cardiovascular Research, 85(3), 593–603. https://doi.org/10.1093/cvr/cvp306
  • Moreno, J. L., Kurita, M., Holloway, T., López, J., Cadagan, R., Martínez-Sobrido, L., García-Sastre, A., & González-Maeso, J. (2011). Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(5), 1863–1872. https://doi.org/10.1523/JNEUROSCI.4230-10.2011
  • Mostafa-Hedeab, G., Al-Kuraishy, H.M., Al-Gareeb, A.I., Jeandet, P., Saad, H.M., & Batiha, G.E. (2022). A raising dawn of pentoxifylline in management of inflammatory disorders in Covid-19. Inflammopharmacology, 29, 1–11. doi:10.1007/s10787-022-00993-1.
  • Mota, C., Rodrigues-Santos, C., Fernández, R., Carolino, R., Antunes-Rodrigues, J., Anselmo-Franci, J. A., & Branco, L. (2017). Central serotonin attenuates LPS-induced systemic inflammation. Brain, Behavior, and Immunity, 66, 372–381. https://doi.org/10.1016/j.bbi.2017.07.010
  • Moubarak, M., Kasozi, K. I., Hetta, H. F., Shaheen, H. M., Rauf, A., Al-Kuraishy, H. M., Qusti, S., Alshammari, E. M., Ayikobua, E. T., Ssempijja, F., Afodun, A. M., Kenganzi, R., Usman, I. M., Ochieng, J. J., Osuwat, L. O., Matama, K., Al-Gareeb, A. I., Kairania, E., Musenero, M., … Batiha, G. E. (2021). The rise of SARS-CoV-2 variants and the role of convalescent plasma therapy for management of infections. Life (Basel, Switzerland), 11(8), 734. https://doi.org/10.3390/life11080734
  • Mpekoulis, G., Frakolaki, E., Taka, S., Ioannidis, A., Vassiliou, A. G., Kalliampakou, K. I., Patas, K., Karakasiliotis, I., Aidinis, V., Chatzipanagiotou, S., Angelakis, E., Vassilacopoulou, D., & Vassilaki, N. (2021). Alteration of L-Dopa decarboxylase expression in SARS-CoV-2 infection and its association with the interferon-inducible ACE2 isoform. PloS One, 16(6), e0253458. https://doi.org/10.1371/journal.pone.0253458
  • Nau, F.,sJr., Yu, B., Martin, D., & Nichols, C. D. (2013). Serotonin 5-HT2A receptor activation blocks TNF-α mediated inflammation in vivo. PloS One, 8(10), e75426. https://doi.org/10.1371/journal.pone.0075426
  • Ochoa-Callejero, L., García-Sanmartín, J., Villoslada-Blanco, P., Íñiguez, M., Pérez-Matute, P., Pujadas, E., Fowkes, M. E., Brody, R., Oteo, J. A., & Martínez, A. (2021). Circulating levels of calcitonin gene-related peptide are lower in COVID-19 patients. Journal of the Endocrine Society, 5(3), bvaa199. https://doi.org/10.1210/jendso/bvaa199
  • Onohuean, H., Al-Kuraishy, H. M., Al-Gareeb, A. I., Qusti, S., Alshammari, E. M., & Batiha, G. E. (2021). Covid-19 and development of heart failure: Mystery and truth. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394(10), 2013–2021. https://doi.org/10.1007/s00210-021-02147-6
  • Peebles, R. S.,sJr., Sheller, J. R., Johnson, J. E., Mitchell, D. B., & Graham, B. S. (1999). Respiratory syncytial virus infection prolongs methacholine-induced airway hyperresponsiveness in ovalbumin-sensitized mice. Journal of Medical Virology, 57(2), 186–192. doi:https://doi.org/10.1002/(sici)1096-9071(199902)57:2<186:aid-jmv17>3.0.co;2-q
  • Pelletier, M., & Siegel, R. M. (2009). Wishing away inflammation? New links between serotonin and TNF signaling. Molecular Interventions, 9(6), 299–301. https://doi.org/10.1124/mi.9.6.5
  • Qing, X., & Keith, I. M. (2003). Targeted blocking of gene expression for CGRP receptors elevates pulmonary artery pressure in hypoxic rats. American Journal of Physiology-Lung Cellular and Molecular Physiology, 285(1), L86–L96. https://doi.org/10.1152/ajplung.00356.2002
  • Reynolds, G. P., Mason, S. L., Meldrum, A., De Keczer, S., Parnes, H., Eglen, R. M., & Wong, E. H. (1995). 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. British Journal of Pharmacology, 114(5), 993–998. https://doi.org/10.1111/j.1476-5381.1995.tb13303.x
  • Robertson, C. E. (2020). Could CGRP antagonists be helpful in the fight against COVID-19? Headache: The Journal of Head and Face Pain, 60(7), 1450–1452. https://doi.org/10.1111/head.13853
  • Saheb Sharif-Askari, F., Saheb Sharif-Askari, N., Goel, S., Hafezi, S., Assiri, R., Al-Muhsen, S., Hamid, Q., & Halwani, R. (2021). SARS-CoV-2 attenuates corticosteroid sensitivity by suppressing DUSP1 expression and activating p38 MAPK pathway. European Journal of Pharmacology, 908, 174374. https://doi.org/10.1016/j.ejphar.2021.174374
  • Sahebnasagh, A., Avan, R., Saghafi, F., Mojtahedzadeh, M., Sadremomtaz, A., Arasteh, O., Tanzifi, A., Faramarzi, F., Negarandeh, R., Safdari, M., Khataminia, M., Rezai Ghaleno, H., Habtemariam, S., & Khoshi, A. (2020). Pharmacological treatments of COVID-19. Pharmacological Reports: PR, 72(6), 1446–1478. https://doi.org/10.1007/s43440-020-00152-9
  • Sakuta, H., Inaba, K., & Muramatsu, S. (1995). Calcitonin gene-related peptide enhances cytokine-induced IL-6 production by fibroblasts. Cellular Immunology, 165(1), 20–25. https://doi.org/10.1006/cimm.1995.1182
  • Samanta, A., Hughes, T., & Moiseenkova-Bell, V. Y. (2018). Transient receptor potential (TRP) channels. Sub-Cellular Biochemistry, 87, 141–165. https://doi.org/10.1007/978-981-10-7757-9_6
  • Sarohan, A. R. (2020). COVID-19: Endogenous retinoic acid theory and retinoic acid depletion syndrome. Medical Hypotheses, 144, 110250. https://doi.org/10.1016/j.mehy.2020.110250
  • Sen, A. (2021). Does serotonin deficiency lead to anosmia, ageusia, dysfunctional chemesthesis and increased severity of illness in COVID-19? Medical Hypotheses, 153, 110627. https://doi.org/10.1016/j.mehy.2021.110627
  • Shaat, A. M., & Abdalgaleil, M. M. (2021). Is theophylline more effective than Sumatriptan in the treatment of post-dural puncture headache? a randomized clinical trial. Egyptian Journal of Anaesthesia, 37(1), 310–316. https://doi.org/10.1080/11101849.2021.1949195
  • Shajib, M. S., & Khan, W. I. (2015). The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiologica (Oxford, England), 213(3), 561–574. https://doi.org/10.1111/apha.12430
  • Sharma, G., Champalal Sharma, D., Hwei Fen, L., Pathak, M., Bethur, N., Pendharkar, V., Peiris, M., & Altmeyer, R. (2013). Reduction of influenza virus-induced lung inflammation and mortality in animals treated with a phosophodisestrase-4 inhibitor and a selective serotonin re-uptake inhibitor. Emerging Microbes & Infections, 2(8), e54. https://doi.org/10.1038/emi.2013.52
  • Sheibani, M., Faghir-Ghanesefat, H., Dehpour, S., Keshavarz-Bahaghighat, H., Sepand, M. R., Ghahremani, M. H., Azizi, Y., Rahimi, N., & Dehpour, A. R. (2019). Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology, 27(5), 1071–1080. https://doi.org/10.1007/s10787-019-00586-5
  • Shibata, M., & Tang, C. (2021). Implications of transient receptor potential cation channels in migraine pathophysiology. Neuroscience Bulletin, 37(1), 103–116. https://doi.org/10.1007/s12264-020-00569-5
  • Singh, J., & Ali, A. (2020). Headache as the presenting symptom in 2 patients with COVID-19 and a history of migraine: 2 case reports. Headache: The Journal of Head and Face Pain, 60(8), 1773–1776. https://doi.org/10.1111/head.13890
  • Skaria, T., Mitchell, K. J., Vogel, O., Wälchli, T., Gassmann, M., & Vogel, J. (2019). Blood pressure normalization-independent cardioprotective effects of endogenous, physical activity-induced αCGRP (α calcitonin gene-related peptide) in chronically hypertensive mice. Circulation Research, 125(12), 1124–1140. https://doi.org/10.1161/CIRCRESAHA.119.315429
  • Skaria, T., Wälchli, T., & Vogel, J. (2021). CGRP receptor antagonism in COVID-19: Potential cardiopulmonary adverse effects. Trends in Molecular Medicine, 27(1), 7–10. https://doi.org/10.1016/j.molmed.2020.10.005
  • Springer, J., Geppetti, P., Fischer, A., & Groneberg, D. A. (2003). Calcitonin gene-related peptide as inflammatory mediator. Pulmonary Pharmacology & Therapeutics, 16(3), 121–130. https://doi.org/10.1016/S1094-5539(03)00049-X
  • Su, C. M., Wang, L., & Yoo, D. (2021). Activation of NF-κB and induction of pro-inflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Scientific Reports, 11(1), 13464. https://doi.org/10.1038/s41598-021-92941-2
  • Tao, B., Jiang, L., & Chen, L. (2020). Aberrant expression of calcitonin gene-related peptide and its correlation with prognosis in severe childhood pneumonia. Clinics (Sao Paulo, Brazil), 75, e1448. https://doi.org/10.6061/clinics/2020/e1448
  • Tazawa, K., Kawashima, N., Kuramoto, M., Noda, S., Fujii, M., Nara, K., Hashimoto, K., & Okiji, T. (2020). Transient receptor potential ankyrin 1 is Up-regulated in response to lipopolysaccharide via P38/Mitogen-activated protein kinase in dental pulp cells and promotes mineralization. The American Journal of Pathology, 190(12), 2417–2426. https://doi.org/10.1016/j.ajpath.2020.08.016
  • Tepper, S. J. (2018). History and review of anti-calcitonin gene-related peptide (CGRP) therapies: From translational research to treatment. Headache: The Journal of Head and Face Pain, 58(Suppl 3), 238–275. https://doi.org/10.1111/head.13379
  • Thyagaturu, H. S., Jha, S., & Demeria, D. (2019). 2646 ischemic colitis secondary to Sumatriptan overuse along with estrogen. The American Journal of Gastroenterology, 114(1), S1456. https://doi.org/10.14309/01.ajg.0000600116.64497.78
  • Vivodtzev, I., Picard, G., O’Connor, K., & Taylor, J. A. (2021). Serotonin 1A agonist and cardiopulmonary improvements with whole-body exercise in acute, high-level spinal cord injury: A retrospective analysis. European Journal of Applied Physiology, 121(2), 453–463. https://doi.org/10.1007/s00421-020-04536-w
  • Walker, C. S., Conner, A. C., Poyner, D. R., & Hay, D. L. (2010). Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends in Pharmacological Sciences, 31(10), 476–483. https://doi.org/10.1016/j.tips.2010.06.006
  • Walsh, D. A., Mapp, P. I., & Kelly, S. (2015). Calcitonin gene-related peptide in the joint: Contributions to pain and inflammation. British Journal of Clinical Pharmacology, 80(5), 965–978. https://doi.org/10.1111/bcp.12669
  • Wanner, S. P., Garami, A., Pakai, E., Oliveira, D. L., Gavva, N. R., Coimbra, C. C., & Romanovsky, A. A. (2012). Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to pro-inflammatory. Cell Cycle (Georgetown, Tex), 11(2), 343–349. https://doi.org/10.4161/cc.11.2.18772
  • Weckbach, L. T., Schweizer, L., Kraechan, A., Bieber, S., Ishikawa-Ankerhold, H., Hausleiter, J., Massberg, S., Straub, T., Klingel, K., Grabmaier, U., Zwiebel, M., Mann, M., Schulz, C., & EMB Study Group. (2022). Association of complement and MAPK activation with SARS-CoV-2-associated myocardial inflammation. JAMA Cardiology, 7(3), 286–297. https://doi.org/10.1001/jamacardio.2021.5133
  • Wu, H., Denna, T. H., Storkersen, J. N., & Gerriets, V. A. (2019). Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacological Research, 140, 100–114. https://doi.org/10.1016/j.phrs.2018.06.015
  • Ye, Q., Wang, B., & Mao, J. (2020). The pathogenesis and treatment of the `cytokine storm’ in COVID-19. The Journal of Infection, 80(6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037
  • Yu, B., Becnel, J., Zerfaoui, M., Rohatgi, R., Boulares, A. H., & Nichols, C. D. (2008). Serotonin 5-hydroxytryptamine(2a) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. The Journal of Pharmacology and Experimental Therapeutics, 327(2), 316–323. https://doi.org/10.1124/jpet.108.143461
  • Yuan, Y., Jiang, Y., Wang, B., Guo, Y., Gong, P., & Xiang, L. (2020). Deficiency of calcitonin gene-related peptide affects macrophage polarization in osseointegration. Frontiers in Physiology, 11, 733. https://doi.org/10.3389/fphys.2020.00733
  • Zhang, F., Yang, H., Wang, Z., Mergler, S., Liu, H., Kawakita, T., Tachado, S. D., Pan, Z., Capó-Aponte, J. E., Pleyer, U., Koziel, H., Kao, W. W., & Reinach, P. S. (2007). Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. Journal of Cellular Physiology, 213(3), 730–739. https://doi.org/10.1002/jcp.21141

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.