735
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9

, ORCID Icon, , , , & show all
Received 30 Jul 2022, Accepted 19 Sep 2022, Published online: 17 Oct 2022

References

  • Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R., MaliK, Z. (2016). Druskos sukelto streso pasireiškimas augalams, tolerancijos druskingumui mechanizmas ir kalio įtaka mažinant druskos sukeltą stresą: Apžvalga. Zemdirbyste-Agricul, 103, 229–238. https://doi.org/10.13080/z-a.2016.103.030
  • Abdullah, M. A., Naqve, S., Bibi, M., Javaid, M. M., Zia, M. A., Ud Din, A., Jabbar, W., Attia, K. A., Al Doss, N., Khan, A. A., Fiaz, S., & Fiaz, S. (2022). Physiological, Biochemical, and yield responses of linseed (Linum usitatissimum L.) in α-Tocopherol-mediated alleviation of salinity stress. Frontiers in Plant Science, 13, 867172. https://doi.org/10.3389/fpls.2022.867172
  • Abreu, I. A., Farinha, A. P., Negrao, S., Gonçalves, N., Fonseca, C., Rodrigues, M., Batista, R., Saibo, N. J., & Oliveira, M. M. (2013). Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 93, 145–168. https://doi.org/10.1016/j.jprot.2013.07.014
  • Ahanger, M. A., Tomar, N. S., Tittal, M., Argal, S., & Agarwal, R. M. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and molecular biology of plants. International Journal of Functional Plant Biology, 23(4), 731–744. https://doi.org/10.1007/s12298-017-0462-7
  • Ahmad, B., Khan, M. M., Jaleel, H., Sadiq, Y., Shabbir, A., & Uddin, M. (2017). Exogenously sourced γ-irradiated chitosan-mediated regulation of growth, physiology, quality attributes, and yield in Mentha piperita L. Turkish Journal of Biology, 41, 388–401. https://doi.org/10.3906/biy-1608-64
  • Ahmed, K. N., Rajpar, I., Ali, K. S., Ali, A., Raza, S., Ahmed, M., Ali, K. F., Ramzan, M., & Wahid, F. (2016). Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7(15), 2257–2271. https://doi.org/10.4236/ajps.2016.715199
  • Alam, M. S., Kong, J., Tao, R., Ahmed, T., Alamin, M., Alotaibi, S. S., Abdelsalam, N. R., & Xu, J. H. (2022). CRISPR/Cas9 mediated knockout of the osbhlh024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants, 11(9), 1184. https://doi.org/10.3390/plants11091184
  • Alam, M. M., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2014). Trehalose induced drought stress tolerance a comparative study among different Brassica species. Plant Omics, 7, 271–283. https://doi.org/10.13140/2.1.2883.1366
  • Alasvandyari, F., Mahdavi, B., & Hosseini, S. M. (2017). Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity induced damage in safflower seedlings. Biology Science, 69, 139–147. https://doi.org/10.2298/ABS160216089A
  • Alenkina, S. A., & Kupryashina, M. A. (2021). Influence of Azospirillum lectins on the antioxidant system response in wheat seedling roots during abiotic stress. Soil Research, 60, 197–209. https://doi.org/10.1071/SR21092
  • Al-Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants, 9, 1–20. https://doi.org/10.1093/aobpla/plx009
  • Ali, B., Wang, X., Saleem, M. H., Sumaira Hafeez, A., Afridi, M. S., Khan, S., Zaib-Un-Nisa Ullah, I., Amaral Junior, A. T. D., Alatawi, A., Ali, S., Alatawi, A., & Ali, S. (2022). PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants, 11, 345. https://doi.org/10.3390/plants11030345
  • Ambede, J. G., Netondo, G. W., Mwai, G. N., & Musyimi, D. M. (2012). NaCl salinity affects germination, growth, physiology, and biochemistry of Bambara groundnut. Plant Physiol, 24(3), 151–160. https://doi.org/10.1590/S1677-04202012000300002
  • Amin, I., Rasool, S., Mir, M. A., Wani, W., Masoodi, K. Z., & Ahmad, P. (2020). Ion homeostasis for salinity tolerance in plants: A molecular approach. Physiologia Plantarum, 171(4), 578–594. https://doi.org/10.1111/ppl.13185
  • Anburaj, R., Nabeel, M. A., Sivakumar, T., & Kathiresan, K. (2012). The role of rhizobacteria in salinity effects on biochemical constituents of the halophyte sesuvium portulacastrum. Russian Journal of Plant Physiology, 59, 115–119. https://doi.org/10.1134/S1021443712010025
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environment Export Botinical, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Assaha, D., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. https://doi.org/10.3389/fphys.2017.00509
  • Badawi, G. H., Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A., & Tanaka, K. (2004). Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia Plantarum, 121(2), 231–238. https://doi.org/10.1111/j.0031-9317.2004.00308.x
  • Belkhadir, Y., & Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. The New Phytologist, 206(2), 522–540. https://doi.org/10.1111/nph.13269
  • Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K., & Kalra, A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 6(1), 34768. https://doi.org/10.1038/srep34768
  • Bhojiya, A. A., Joshi, H., Upadhyay, S. K., Srivastava, A. K., Pathak, V. V., Pandey, V. C., & Jain, D. (2022). Screening and optimization of zinc removal potential in pseudomonas aeruginosa-hmr1 and its plant growth-promoting attributes. Bull Environment Control Toxicol, 108(3), 468–477. https://doi.org/10.1007/s00128-021-03232-5
  • Binyameen, B., Khan, Z., Khan, S. H., Ahmad, A., Munawar, N., Mubarik, M. S., Riaz, H., Ali, Z., Khan, A. A., Qusmani, A. T., Abd Elsalam, K. A., & Qari, S. H. (2021). Using multiplexed CRISPR/Cas9 for suppression of cotton leaf curl virus. International Journal of Molecular Sciences, 22(22), 12543. https://doi.org/10.3390/ijms222212543
  • Buoso, S., Musetti, R., Marroni, F., Calderan, A., Schmidt, W., & Santi, S. (2022). Infection by phloem-limited phytoplasma affects mineral nutrient homeostasis in tomato leaf tissues. Journal of Plant Physiology, 271, 153659. https://doi.org/10.1016/j.jplph.2022.153659
  • Cardinale, M., Ratering, S., Suarez, C., Zapata Montoya, A. M., Geissler-Plaum, R., & Schnell, S. (2015). Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiological Research, 181, 22–32. https://doi.org/10.1016/j.micres.2015.08.002
  • Carocho, M., & Ferreira, I. C. (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15–25. https://doi.org/10.1016/j.fct.2012.09.021
  • Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4 suppl 1), 1011–1019. https://doi.org/10.1590/s1415-47572012000600016
  • Chaganti, V. N., Crohn, D. M., & Simunek, J. (2015). Leaching and reclamation of a biochar and compost Amended saline–sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158, 255–265. https://doi.org/10.1016/j.agwat.2015.05.016
  • Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences : CMLS, 61(2), 192–208. https://doi.org/10.1007/s00018-003-3206-5
  • Copley, S. D., & Dhillon, J. K. (2002). Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biology, 3(5). research 0025. https://doi.org/10.1186/gb-2002-3-5-research0025.
  • Costa, P. H. A., Neto, A., Bezerra, M., Prisco, J., & Filho, E. (2005). Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance. Brazar Journal Plant Physiol, 17(4), 353–361. https://doi.org/10.1590/S1677-04202005000400003
  • Cui, G., Lu, Y., Zheng, C., Liu, Z., & Sai, J. (2019). Relationship between soil salinization and groundwater hydration in Yaoba Oasis, Northwest China. Water, 11, 175. https://doi.org/10.3390/w11010175
  • Dehnavi, A. R., Zahedi, M., Ludwiczak, A., & Piernik, A. (2022). Foliar application of salicylic acid improves salt tolerance of sorghum (Sorghum bicolor (L.) Moench). Plants, 11, 368. https://doi.org/10.3390/plants11030368
  • De Pinto, M. C., Locato, V., Sgobba, A., Romero-Puertas, M. D. C., Gadaleta, C., Delledonne, M., & de Gara, L. (2013). S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiology, 163(4), 1766–1775. https://doi.org/10.1104/pp.113.222703
  • Dumanovic, J., Nepovimova, E., Natic, M., Kuca, K., & Jacevic, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969. https://doi.org/10.3389/fpls.2020.552969
  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 2791. https://doi.org/10.3389/fmicb.2019.02791
  • El-Shabrawi, H., Kumar, B., Kaul, T., Reddy, M. K., Singla-Pareek, S. L., & Sopory, S. K. (2010). Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma, 245, 85–96. https://doi.org/10.1007/s00709-010-0144-6
  • El-Taher, A. M., Abd El-Raouf, H. S., Osman, N. A., Azoz, S. N., Omar, M. A., Elkelish, A., & Abd El-Hady, M. (2021). Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (Vigna unguiculata L.) Plants. Plants (Basel, Switzerland), 11(1), 115. https://doi.org/10.3390/plants11010115
  • Evelin, H., Devi, T. S., Gupta, S., & Kapoor, R. (2019). Mitigation of Salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10, 470. https://doi.org/10.3389/fpls.2019.00470
  • Evers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J. F., Rosales, R. O. G., Marca, L. R. T., Hofmann, L., Bonierbale, M., & Schafeitner, R. (2010). Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany, 61(9), 2327–2343. https://doi.org/10.1093/jxb/erq060
  • Fiodor, A., Singh, S., & Pranaw, K. (2021). The contrivance of plant growth promoting microbes to mitigate climate change impact in agriculture. Microorganisms, 9, 1841, https://doi.org/10.3390/microorganisms9091841.
  • Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134–142. https://doi.org/10.1016/j.envexpbot.2018.05.003
  • Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994). Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant, Cell & Environment, 17(5), 507–523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  • Genc, Y., Taylor, J., Lyons, G. H., Li, Y., Cheong, J., Appel, B., Oldach, M., Sutton, K, T., & Sutton, T. (2019). Bread wheat with high salinity and sodicity tolerance. Frontiers in Plant Science, 10, 1280. https://doi.org/10.3389/fpls.2019.01280
  • Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. (2015). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops Product, 64, 175–181. https://doi.org/10.1016/j.indcrop.2014.10.058
  • Gonzalez-Mendoza, V. M., Sanchez-Sandoval, M. E., Castro-Concha, L. A., & Hernandez-Sotomayor, S. M. (2021). Phospholipases C and D and their role in biotic and abiotic stresses. Plants, 10(5), 921. https://doi.org/10.3390/plants10050921
  • Gopalakrishnan, T., Hasan, M. K., Haque, A. T. M. S., Jayasinghe, S. L., & Kumar, L. (2019). Sustainability of coastal agriculture under climate change. Sustainability, 11, 7200. https://doi.org/10.3390/su11247200
  • Gossett, R. D., Millhollon, P. E., Cran-Lucas, M., Banks, W. S., & Marny, M. M. (1994). The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cultivars cotton (Gossypium hirsutum L.). Plant Cell Reports, 13(9), 498–503. https://doi.org/10.1007/BF00232944
  • Gupta, A., Rai, S., Bano, A., Khanam, A., Sharma, S., & Pathak, N. (2021). Comparative evaluation of different salt-tolerant plant growth-promoting bacterial isolates in mitigating the induced adverse effect of salinity in Pisum sativum. Biointerface Research in Applied Chemistry, 11, 13141–13154. https://doi.org/10.33263/BRIAC115.1314113154
  • Hafez, E. M., Alsohim, A. S., Farig, M., Omara, A. E. D., Rashwan, E., & Kamara, M. M. (2019). Synergistic effect of biochar and plant growth promoting rhizobacteria on alleviation of water deficit in rice plants under salt-affected soil. Agronomy, 9, 847. https://doi.org/10.3390/agronomy9120847
  • Han, K. H., & Hwang, C. H. (2003). Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol, 5(3), 149–153.
  • Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 7, 1787. https://doi.org/10.3389/fpls.2016.01787
  • Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International, 757219. https://doi.org/10.1155/2014/757219
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. (2020). Antioxidants, 9(8), 681. Basel. https://doi.org/10.3390/antiox9080681
  • Hasanuzzaman, M., & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143(3), 1758–1776. https://doi.org/10.1007/s12011-011-8998-9
  • Hasanuzzaman, M., & Fujita, M. (2013). Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22, 584–596. https://doi.org/10.1007/s10646-013-1050-4
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., & Fujita, M. (2012). Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci, 6(8), 1314–1323.
  • Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants : An International Journal of Functional Plant Biology, 23(2), 249–268. https://doi.org/10.1007/s12298-017-0422-2
  • Hasanuzzaman, M., Nahar, K., Bhuiyan, T. F., Anee, T. I., Inafuku, M., Oku, H., & Fujita, M. (2017). Salicylic acid: An all-rounder in regulating abiotic stress responses in plants. Phytohormones-Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses, 31–75. https://doi.org/10.5772/intechopen.68213
  • Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ijms22179326
  • Hassan, A., Fasiha, A. S., Hamzah, S. M., Yasmin, H., Imran, M., Riaz, M., Ali, Q., Ahmad, J. F., Mobeen, A. S., Abdullah, S., Ali, A. A., Nasser, A. M., & Nasser Alyemeni, M. (2021). Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci, 28(8), 4276–4290. https://doi.org/10.1016/j.sjbs.2021.03.045
  • Hassanpouraghdam, M. B., Vojodi, M. L., Bonabian, Z., Aazami, M. A., Rasouli, F., Feldo, M., Strzemski, M., & Dresler, S. (2022). Foliar application of cerium oxide-salicylic acid nanoparticles (CeO2:SA Nanoparticles) Influences the growth and physiological responses of portulaca oleracea l. under salinity. International Journal of Molecular Sciences, 23(9), 5093. https://doi.org/10.3390/ijms23095093
  • Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment, 33(4), 552–565. https://doi.org/10.1111/j.1365-3040.2009.02056.x
  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7(11), 1456–1466. https://doi.org/10.4161/psb.21949
  • Hill, A. E., & Shachar-Hill, Y. (2015). Are aquaporins the missing transmembrane osmosensors? The Journal of Membrane Biology, 248, 753–765. https://doi.org/10.1007/s00232-015-9790-0
  • Hodaei, M., Rahimmalek, M., Arzani, A., & Talebi, M. (2018). The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Industrial Crops and Products, 120, 295–304. https://doi.org/10.1016/j.indcrop.2018.04.073
  • Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10(800). https://doi.org/10.3389/fpls.2019.00800
  • Islam, F., Yasmeen, T., Arif, M. S., Ali, S., Ali, B., Hameed, S., & Zhou, W. (2016). Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regulation, 80(1), 23–36. https://doi.org/10.1007/s10725-015-0142-y
  • Ismail, A., El-Sharkawy, I., & Sherif, S. (2020). Salt stress signals on demand: Cellular events in the right context. International journal of molecular sciences, 21, 11, 3918, https://doi.org/10.3390/ijms21113918.
  • Jadhav, P. V., Kale, P. B., Moharil, M. P., Gawai, D. C., Dudhare, M. S., Munje, S. S., Nandanwar, R. S., Mane, S. S., Varghese, P., Manjaya, J. G., & Dani, R. G. (2021). Genetic engineering of crop plants for salinity and drought stress tolerance: Being closer to the field. In Abiotic Stress Tolerance Mechanisms in Plants (pp. 1–84). CRC Press. https://doi.org/10.1201/9781003163831-1
  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Critical Reviews in Plant Sciencesences, 30(5), 435–458. https://doi.org/10.1080/07352689.2011.605739
  • Janku, M., Luhova, L., & Petrivalsky, M. On the origin and fate of reactive oxygen species in plant cell fCompartments. (2019). Antioxidants, 8(4), 105. Basel. https://doi.org/10.3390/antiox8040105
  • Jaramillo, R. V., van de, Z. R., Peller, J., Visser, R. G. F., van der, L. C. G., & van Loo, E. N. (2021). High-resolution analysis of growth and transpiration of quinoa under saline conditions. Frontiers in Plant Science, 12, 634311. https://doi.org/10.3389/fpls.2021.634311
  • Jha, Y. (2019). The importance of zinc-mobilizing rhizosphere bacteria to the enhancement of physiology and growth parameters for paddy under salt-stress conditions. Jordan Journal of Biological Sciences, 12(2), 167–173.
  • Jose, J., Ghantasala, S., & Choudhury, S. R. (2020). Arabidopsis transmembrane receptor-like kinases (RLKs): A bridge between extracellular signal and intracellular regulatory machinery. International Journal of Molecular Sciences, 21(11), 4000. https://doi.org/10.3390/ijms21114000
  • Kahlaoui, B., Hachicha, M., Misle, E., Fidalgo, F., & Teixeira, J. (2018). Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. Journal of the Saudi Society of Agricultural Sciences, 17, 17–23. https://doi.org/10.1016/j.jssas.2015.12.002
  • Kaminska, I., Lukasiewicz, A., Klimek-Chodacka, M., Długosz-Grochowska, O., Rutkowska, J., Szymonik, K., & Baranski, R. (2022). Antioxidative and osmoprotectant mechanisms in carrot plants tolerant to soil salinity. Scientific Reports, 12(1), 7266. https://doi.org/10.1038/s41598-022-10835-3
  • Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. T. (2019). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21(1), 148. https://doi.org/10.3390/ijms21010148
  • Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M., & Lee, I. J. (2014). Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology, 24(1), 106–112. https://doi.org/10.4014/jmb.1304.04015
  • Kasim, W. A., Osman, M. E., Omar, M. N., El Daim, I. A. A., Bejai, S., & Meijer, J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of Plant Growth Regulation, 32(1), 122–130. https://doi.org/10.1007/s00344-012-9283-7
  • Kasotia, A., Varma, A., & Choudhary, D. K. (2015). Pseudomonas mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res, 4(1), 31–41. https://doi.org/10.1007/s40003-014-0139-1
  • Kaya, C., Osman, S., Salih, A., Muhammad, A., & Murat, D. (2013). Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). Journal of Plant Interactions, 8(3), 234–241. https://doi.org/10.1080/17429145.2012.725480
  • Khan, M. A., Asaf, S., Khan, A. L., Ullah, I., Ali, S., Kang, S. M., & Lee, I. J. (2019). Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Annals of Microbiology, 69(8), 797–808. https://doi.org/10.1007/s13213-019-01470-x
  • Khan, M. A., Hamayun, M., Asaf, S., Khan, M., Yun, B. W., Kang, S. M., & Lee, I. J. (2021). Rhizospheric bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L. Frontiers in Plant Science, 12, 665590. https://doi.org/10.3389/fpls.2021.665590
  • Kharusi, L. A., Yahyai, R. A., & Yaish, M. W. (2019). Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of date palm. Agriculture, 9, 1–17. https://doi.org/10.3390/agriculture9010008
  • Khattar, V., Wang, L., & Peng, J. B. (2022). Calcium Selective Channel TRPV6: Structure, Function, and Implications in Health and Disease. Gene, 11, 146192. https://doi.org/10.1016/j.gene.2022.146192
  • Khoshbakht, D., Asghari, M. R., & Haghighi, M. (2018). Influence of foliar application of polyamines on growth, gas-exchange characteristics, and chlorophyll fluorescence in Bakraii citrus under saline conditions. Photosynthetica, 56, 731–742. https://doi.org/10.1007/s11099-017-0723-2
  • Kibria, M. G., Hossain, K., Murata, Y., & Hoque, M. A. (2017). Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes. Rice Science, 24, 155–162. https://doi.org/10.1016/j.rsci.2017.05.001
  • Krieger-Liszkay, A., Fufezan, C., & Trebst, A. (2008). Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research, 98(1–3), 551–564. https://doi.org/10.1007/s11120-008-9349-3
  • Krishnamoorthy, I., Choudhury, A. R., Walitang, D., Anandham, R., Senthilkumar, R., M, (2022). Salt Stress Tolerance-Promoting Proteins and Metabolites under Plant-Bacteria-Salt Stress Tripartite Interactions. Application Science, 12, 3126. https://doi.org/10.3390/app12063126
  • Kumar, R. (2009). Role of naturally occurring osmolytes in protein folding and stability. Archives of Biochemistry, 491(1–2), 1–6. https://doi.org/10.1016/j.abb.2009.09.007
  • Kumar, P., Tewari, R. K., & Sharma, P. N. (2010). Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants, 2010, lq002. https://doi.org/10.1093/aobpla/plq002
  • Kusale, S. P., Attar, Y. C., Sayyed, R. Z., Malek, R. A., Ilyas, N., Suriani, N. L., Khan, N., & El Enshasy, H. A. (2021). Production of Plant Beneficial and Antioxidants Metabolites by Klebsiella variicola under Salinity Stress. Molecules (Basel, Switzerland), 26(7), 1894. https://doi.org/10.3390/molecules26071894
  • Lan, P., Li, W., Wen, T. N., Shiau, J. Y., Wu, Y. C., Lin, W., & Schmidt, W. (2011). iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiology, 155(2), 821–834. https://doi.org/10.1104/pp.110.169508
  • Lee, Y. P., Kim, S. H., Bang, J. W., Lee, H. S., Kwak, S. S., & Kwon, S. Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Reports, 26(5), 591–598. https://doi.org/10.1007/s00299-006-0253-z
  • Li, Y. J., Hai, R. L., Du, X. H., Jiang, X. N., & Lu, H. (2009). Overexpression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed, 128(4), 404–410. https://doi.org/10.1111/j.1439-0523.2008.01593.x
  • Li, J., Li, J., Zhang, M., Zhang, M., Yang, L., Mao, X., Li, J., Wang, L., Li, J., Liu, H., Zheng, H., Li, Z., Zhao, Z., Zhao, H., Li, H., Li, X., Lei, X., Lei, L., Sun, L., Zou, D. , and Zou, D. (2021). OsADR3 increases drought stress tolerance by inducing antioxidant defense mechanisms and regulating OsGPX1 in rice (Oryza sativa L.). CCrop Journal, 9(5), 1003–1017. https://doi.org/10.1016/j.cj.2020.12.005
  • Lin, K. H., & Pu, S. F. (2010). Tissue-and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. Biol Plantarum, 54(4), 664–670. https://doi.org/10.1007/s10535-010-0118-8
  • Li, X., Xu, S., Fuhrmann-Aoyagi, M. B., Yuan, S., Iwama, T., Kobayashi, M., & Miura, K. (2022). CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Current Issues in Molecular Biology, 44(6), 2664–2682. https://doi.org/10.3390/cimb44060182
  • Lu, Z., Liu, D., & Liu, S. (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 26, 1909–1917. https://doi.org/10.1007/s00299-007-0395-7.
  • Luo, Y., Tang, H., & Zhang, Y. (2011). Production of reactive oxygen species and antioxidant metabolism about strawberry leaves to low temperatures. The Journal of Agricultural Science, 3, 89–96. https://doi.org/10.5539/jas.v3n2p89
  • Lushchak, V. I. (2012). Glutathione homeostasis and functions: Potential targets for medical interventions. Journal of Amino Acids, 2012, 1–26. https://doi.org/10.1155/2012/736837
  • Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. (2018). P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Interact, 13(1), 461–471. https://doi.org/10.1080/17429145.2018.1506516
  • Mahajan, M. M., Goyal, E., Singh, A. K., Gaikwad, K., & Kanika, K. (2020). Shedding light on response of Triticum aestivum cv. Kharchia Local roots to long-term salinity stress through transcriptome profiling. Plant Growth Regulation, 90(2), 369–381. https://doi.org/10.1007/s10725-019-00565-4
  • Mahmud, A. A., Upadhyay, S. K., Srivastava, A. K., & Bhojiya, A. A. (2021). Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063. https://doi.org/10.1016/j.crsust.2021.100063
  • Majeed, A., & Muhammad, Z. (2019). Salinity: A major agricultural problem causes, impacts on crop productivity and management strategies. In Plant abiotic stress tolerance. Springer, Cham (pp. 83–99). https://doi.org/10.1007/978-3-030-06118-0_3
  • Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79, 727–747. https://doi.org/10.1093/ajcn/79.5.727
  • Minh, L. T., Khang, D. T., Ha, P. T. T., Tuyen, P. T., Minh, T. N., Quan, N. V., & Xuan, T. D. (2016). Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.). International Letters of Natural Sciences, 57, 1–10. https://doi.org/10.18052/www.scipress.com/ILNS.57.1
  • Miransari, M., & Smith, D. L. (2009). Alleviating salt stress on soybean (Glycine max (L.) Merr.) – Bradyrhizobium japonicum symbiosis, using signal molecule genistein. European Journal Soil Biology, 45(2), 146–152. https://doi.org/10.1016/j.ejsobi.2008.11.002
  • Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture, 11, 983. https://doi.org/10.3390/agriculture11100983
  • Moriwaki, T., Yamamoto, Y., Aida, T., Funahashi, T., Shishido, T., Asada, M., Prodhan, S. H., Komamine, A., & Motohashi, T. (2008). Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnology Reports, 2(1), 41–46. https://doi.org/10.1007/s11816-008-0046-7
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2009). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected ?elds. Canadian Journal of Microbiology, 55(11), 1302–1309. https://doi.org/10.1139/w09-092
  • Nagamiya, K. T., Motohashi, K., Nakao, S. H., Prodhan, E., Hattori Hirose, S., Ohkawa, K., Ozawa, Y., Komamine, T., Takabe, A., Takabe, T., & Komamine, A. (2007). Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, Kat E. Plant Biotechnology Reports, 1(1), 49–55. https://doi.org/10.1007/s11816-007-0007-6
  • Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015). Glutathione-induced drought stress tolerance in mung bean: Coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants, 7, 1–18. https://doi.org/10.1093/aobpla/plv069
  • Nahar, K., Hasanuzzaman, M., & Fujita, M. 2016. Roles of osmolytes in plant adaptation to drought and salinity. In N. Iqbal, R. Nazar, & N. Khan Eds., Osmolytes and Plants Acclimation to Changing: Emerging Omics Technologies. Springer, p. 3768. https://doi.org/10.1007/978-81-322-2616-14.
  • Naliwajski, M., & Skłodowska, M. (2021). The Relationship between the Antioxidant System and Proline Metabolism in the Leaves of Cucumber Plants Acclimated to Salt Stress. Cells, 10(3), 609. https://doi.org/10.3390/cells10030609
  • Naqve, M., Wang, X., Shahbaz, M., Mahmood, A., Bibi, S., & Fiaz, S. (2021). Alpha Tocopherol-Induced Modulations in the Morphophysiological Attributes of Okra Under Saline Conditions. Frontiers in Plant Science, 12, 800251. https://doi.org/10.3389/fpls.2021.800251
  • Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., & Sopory, S. K. (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry : PPB / Societe Francaise de Physiologie Vegetale, 66, 1–9. https://doi.org/10.1016/j.plaphy.2013.01.020
  • Nazir, R., Mandal, S., Mitra, S., Ghorai, M., Das, N., Jha, N. K., Majumder, M., Pandey, D. K., & Dey, A. (2022). Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat. Physiologia Plantarum, 74(2), e13642. https://doi.org/10.1111/ppl.13642
  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249
  • Nongpiur, R. C., Singla-Pareek, S. L., Pareek, A., & Foyer, C. (2020). The quest for osmosensors in plants. Journal of Experimental Botany, 71(2), 595–607. https://doi.org/10.1093/jxb/erz263
  • Noreen, S., Faiz, S., Akhter, M. S., & Shah, K. H. (2019). Influence of foliar application of osmoprotectants to ameliorate salt stress in sunflower (Helianthus annuus L.). Sarhad Journal of Agriculture, 35, 1316–1325. https://doi.org/10.17582/journal.sja/2019/35.4.1316.1325
  • Obata, T., Kitamoto, H. K., Nakamura, A., Fukuda, A., & Tanaka, Y. (2007). Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol, 144, 1978–1985. https://doi.org/10.1104/pp.107.101154.
  • Ogawa, K. (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxidants & Redox Signaling, 7(7–8), 973–998. https://doi.org/10.1089/ars.2005.7.973
  • Omoto, E., Taniguchi, M., & Mayake, H. (2012). Adaptation responses in C4 photosynthesis of maize under salinity. Journal of Plant Physiology, 169(5), 469–477. https://doi.org/10.1016/j.jplph.2011.11.009
  • Ondrasek, G., Rathod, S., Manohara, K. K., Gireesh, C., Anantha, M. S., Sakhare, A. S., Parmar, B., Yadav, B. K., Bandumula, N., Raihan, F., Zielinska-Chmielewska, A., Merino-Gergichevich, C., Reyes Diaz, M., Khan, A., Panfilova, O., Seguel, F. A., Romero, S. M., Nabil, B., Wan, C. C., Horvatinec, J. … Horvatinec, J. (2022). Salt Stress in Plants and Mitigation Approaches. Plants, 11(6), 717. Basel. https://doi.org/10.3390/plants11060717
  • Osman, H. S., & Salim, B. B. (2016). Influence of exogenous application of some phytoprotectants on growth, yield and pod quality of snap bean under NaCl salinity. Annals of Agricultural Sciences, 61, 1–13. https://doi.org/10.1016/j.aoas.2016.05.001
  • Ozden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Science Horticult, 119(2), 163–168. https://doi.org/10.1016/j.scienta.2008.07.031
  • Panwar, M., Tewari, R., & Nayyar, H. (2016). Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiology and Molecular Biology of Plants, 22, 445–459. https://doi.org/10.1007/s12298-016-0376-9
  • Pareek, N. Climate change impact on soils: Adaptation and mitigation. (2017). MOJ Economics Environment Science, 2(3), 00026. 00026. https://doi.org/10.15406/mojes.2017.02
  • Pareek, A., Dhankher, O. P., & Foyer, C. H. (2020). Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany, 71(2), 451–456. https://doi.org/10.1093/jxb/erz518
  • Parkash, V., & Singh, S. (2020). Potential of Biochar Application to Mitigate Salinity Stress in Eggplant. Hortscience, 55, 1946–1955. https://doi.org/10.21273/HORTSCI15398-20.
  • Park, J. R., Kim, E. G., Jang, Y. H., Jan, R., Farooq, M., Ubaidillah, M., & Kim, K. M. (2022). Applications of CRISPR/Cas9 as New Strategies for Short Breeding to Drought Gene in Rice. Front Plant Science, 13, 850441. https://doi.org/10.3389/fpls.2022.850441
  • Paul, S., Upadhyay, S. K., & Lal, E. P. (2014). Accumulation of arsenic in radish (Raphanus sativus L.), and their effects on growth and antioxidant activities. International Journal of Pharmaceutical Sciences and Research, 5, 3536–3543. https://doi.org/10.13040/IJPSR.0975-8232.5(8).3536-43
  • Pokotylo, I., Kolesnikov, Y., Kravets, V., Zachowski, A., & Ruelland, E. (2014). Plant phosphoinositide-dependent phospholipases C: Variations around a canonical theme. Biochimie, 96, 144–157. https://doi.org/10.1016/j.biochi.2013.07.004
  • Pompella, A., Visvikis, A., Paolicchi, A., De Tata, V., & Casini, A. F. (2003). The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 66, 1499–1503. https://doi.org/10.1016/s0006-2952(03)00504-5
  • Prasertsuk, S., & Wijitkosum, S. (2020). Biochar Application for Rice Cultivation in Salt-Affected Soils. Engineering Journal, 25, 19–32. https://doi.org/10.21203/rs.3.rs-81012/v1
  • Qadir, M., Quillerou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295. https://doi.org/10.1111/1477-8947.12054
  • Rajput, V. D., Harish, S., K, R., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M., Gour, V. S., Minkina, T., Sushkova, S., & Mandzhieva, S. (2021). Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology, 10(4), 1–28. https://doi.org/10.3390/biology10040267
  • Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613
  • Riffat, A., & Ahmad, M. A. (2018). Changes in organic and inorganic osmolytes of maize (Zea mays L.) by sulfur application under salt stress conditions. The Journal of Agricultural Science, 10, 543–561. https://doi.org/10.5539/jas.v10n12p543
  • Robbins, N. E., & Dinneny, J. R. (2015). The divining root: Moisture-driven responses of roots at the micro-and macro-scale. Journal of Experimental Botany, 66(8), 2145–2154. https://doi.org/10.1093/jxb/eru496
  • Rojas-Tapias, D., Moreno-Galvan, A., Pardo Diaz, S., Obando, M., Rivera, D., & Bonilla, R. H. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology : A Section of Agriculture, Ecosystems & Environment, 61, 264–272. https://doi.org/10.1016/j.apsoil.2012.01.006
  • Rosgen, J. (2007). Molecular basis of osmolyte effects on protein and metabolites. Methods in Enzymology, 428, 459–486. https://doi.org/10.1016/S0076-6879(07)28026-7
  • Rossatto, T., Do Amaral, M. N., Benitez, L. C., Vighi, I. L., Braga, E. J. B., de Magalhaes, Maia, M. A. C., Junior, A. M., Maia, M. A. C., & da Silva, P. L. (2017). Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plant, 23(4), 865–875. https://doi.org/10.1007/s12298-017-0467-2
  • Ruiz, J. M., & Blumwald, E. (2002). Salinity-induced glutathione synthesis in Brassica napus. Planta, 214(6), 965–996. https://doi.org/10.1007/s00425-002-0748-y
  • Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10, 1–37. https://doi.org/10.3390/antiox10020277
  • Saleem, S., Iqbal, A., Ahmed, F., & Ahmad, M. (2021). Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum. Saudi J Biol Sci, 28(9), 5317–5324. https://doi.org/10.1016/j.sjbs.2021.05.056
  • Santos, A. A., Silveira, J. A. G. D., Bonifacio, A., Rodrigues, A. C., & Figueiredo, M. D. V. B. (2018). Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology], 49(3), 513–521. https://doi.org/10.1016/j.bjm.2017.12.003
  • Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant Physiology, 101(1), 7–12. https://doi.org/10.1104/pp.101.1.7
  • Selem, E., Hassan, A., Awad, M. F., Mansour, E., & Desoky, E. M. (2022). Impact of Exogenously sprayed antioxidants on physio-biochemical Agronomic, and Quality Parameters of Potato in Salt-Affected Soil. Plants (Basel, Switzerland), 11(2), 210. https://doi.org/10.3390/plants11020210
  • Semida, W. M., Abd El-Mageed, T. A., Abdelkhalik, A., Hemida, K. A., Abdurrahman, H. A., Howladar, S. M., Leilah, A. A. A., & Rady, M. O. A. (2021). Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy, 11, 855. https://doi.org/10.3390/agronomy11050855
  • Semida, W. M., Abd El-Mageed, T. A., Mohamed, S. E., & El-Sawah, N. A. (2017). Combined effect of deficit irrigation and foliar-applied salicylic acid on physiological responses, yield, and water-use efficiency of onion plants in saline calcareous soil. Archives of Agronomy and Soil Science, 63(9), 1227–1239. https://doi.org/10.1080/03650340.2016.1264579
  • Serraj, R. A. C. H. I. D., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25(2), 333–341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  • Shahbaz, M., Abid, A., Masood, A., & Waraich, E. A. (2017). Foliar-applied trehalosemodulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. Journal of Plant Nutrition, 40(4), 584–599. https://doi.org/10.1080/01904167.2016.1263319
  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil Salinity: Historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Springer. https://doi.org/10.1007/978-3-319-96190-3_2
  • Shao, H. B., Chu, L. Y., Lu, Z. H., & Kang, C. M. (2008). Primary antioxidant free radical scavenging and redox signalling pathways in higher plant cells. International Journal of Biological Sciences, 4, 8–14. https://doi.org/10.7150/ijbs.4.8
  • Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209–221. https://doi.org/10.1007/s10725-005-0002-2
  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal Botany, 1–26. https://doi.org/10.1155/2012/217037
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 97, 1–36. https://doi.org/10.3390/biom9070285
  • Shi, W. M., Muramoto, Y., Ueda, A., & Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273(1), 23–27. https://doi.org/10.1016/s0378-1119(01)00566-2
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 2(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Silva, P., & Geros, H. (2009). Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signaling Behavior, 4(8), 718–726. https://doi.org/10.4161/psb.4.8.9236
  • Sindhu, S. S., Rakshiya, Y. S., & Sahu, G. (2009). Biological control of soil borne plant pathogens with rhizosphere. Bacterial Pest Technology, 3(1), 10–21.
  • Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D., & Jiang, M. (2022a). Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Frontiers in Microbiology, 2415. https://doi.org/10.3389/fmicb.2022.898979
  • Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Re/Views in Environmental Science and Bio/Technology (Online), 14(3), 407–426. https://doi.org/10.1007/s11157-015-9372-8
  • Singh, D. P., Singh, V., Gupta, V. K., Shukla, R., Prabha, R., Sarma, B. K., & Patel, J. S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports, 10(1), 4818. https://doi.org/10.1038/s41598-020-61140-w
  • Singh, R. K., Singh, P., Sharma, A., Guo, D.-J., Upadhyay, S. K., Song, Q.-Q., Verma, K. K., Li, D.-P., Malviya, M. K., Song, X.-P., Yang, L.-T., & Li, Y.-R. (2022b). Unraveling nitrogen fixing potential of endophytic diazotrophs of different saccharum species for sustainable sugarcane growth. International Journal of Molecular Sciences, 23, 6242. https://doi.org/10.3390/ijms23116242
  • Singh, M., & Tiwari, N. (2021). Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense. Communicative & Integrative Biology, 14(1), 136–150. https://doi.org/10.1080/19420889.2021.1937839
  • Sirin, S., & Aslım, B. (2019). Determination of antioxidant capacity, phenolic acid composition and antiproliferative effect associated with phenylalanine ammonia lyase (PAL) activity in some plants naturally growing under salt stress. Medicinal Chemistry Research : An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents, 28(3), 229–238. https://doi.org/10.1007/s00044-018-2278-6
  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433–447. https://doi.org/10.1093/aob/mcu239
  • Smirnoff, N. (2018). Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radical Biology & Medicine, 122, 116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
  • Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal Molecular Science, 16(12), 13561–13578. https://doi.org/10.3390/ijms160613561
  • Srivalli, B., Sharma, G., & Khanna, C. R. (2003). Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Plant Physiology, 119(4), 503–512. https://doi.org/10.1046/j.1399-3054.2003.00125.x
  • Sultana, S., Alamb, S., & Karimc, M. M. (2021). Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal Agriculture Food Resource, 4, 100150. 00150. https://doi.org/10.1016/j.jafr.2021.1
  • Sun, W. H., Duan, M., Shu, D. F., Yang, S., & Meng, Q. W. (2010). Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Reports, 29(8), 917–926. https://doi.org/10.1007/s00299-010-0878-9
  • Sun, Y. P., Yang, J. S., Yao, R. J., Chen, X. B., & Wang, X. P. (2020). Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Scientific Reports, 10(1), 8946. https://doi.org/10.1038/s41598-020-65730-6
  • Suprasanna, P., Nikalje, G. C., & Rai, A. N. 2016. Osmolyte accumulation and implications in plant abiotic stress tolerance. In N. Iqbal, R. Nazar, & N. Khan Eds., Osmolytes and plants acclimation to changing environment: Emerging omics technologies. springer, pp. 1–12. https://doi.org/10.1007/978-81-322-2616-1_1.
  • Surekha, C. H., Nirmala Kumari, K., Aruna, L. V., Suneetha, G., Arundhati, A., & Kavi Kishor, P. B. 2014. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tiss. Organ Cult. 116, 27–36. doi:10.1007/s11240-013-0378-z
  • Suthar, S. (2010). Recycling of agro-industrial sludge through vermitechnology. Ecological Engineering, 36(8), 1028–1036. https://doi.org/10.1016/j.ecoleng.2010.04.015
  • Tan, B. L., Norhaizan, M. E., Liew, W. P., & Sulaiman, R. H. (2018). Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Frontiers in Pharmacology, 9, 1162. https://doi.org/10.3389/fphar.2018.01162
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl– ions on barley growth under salinity stress. Journal of Experimental Botany, 62(6), 2189–2203. https://doi.org/10.1093/jxb/erq422
  • Tohidi, B., Rahimmalek, M., & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry, 220, 153–161. https://doi.org/10.1016/j.foodchem.2016.09.203
  • Ullah, S., & Bano, A. (2015). Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Canadian Journal of Microbiology, 61(4), 307–313. https://doi.org/10.1139/cjm-2014-0668
  • Ullah, A., & Bano, A. (2019). Role of PGPR in the reclamation and revegetation of saline land. Pakistan Journal Botonical, 51(1), 27–35. https://doi.org/10.30848/PJB2019-1(43)
  • Upadhyay, S. K., & Chauhan, P. K. (2022). Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea Mays L.) plant growth, Na uptake reduction and saline soil restoration. Environmental Research, 211, 113081. https://doi.org/10.1016/j.envres.2022.113081
  • Upadhyay, S. K., & Edrisi, S. A. (2021). Developing sustainable measures to restore fly ash contaminated lands: Current challenges and future prospects. Land Deg Dev, 32(17), 4817–4831. https://doi.org/10.1002/ldr.4090
  • Upadhyay, S. K., Saxena, A. K., Singh, J. S., & Singh, D. P. (2019). Impact of native ST-PGPR (Bacillus pumilus; EU927414) on PGP traits, antioxidants activities, wheat plant growth and yield under salinity. Climate Change and Environmental Sustainability, 7(2), 157–168.
  • Upadhyay, S. K., Singh, D. P., & Papen, H. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 17(1), 288–293. https://doi.org/10.1111/plb.12173
  • Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology, 59(5), 489–496. https://doi.org/10.1007/s00284-009-9464-1
  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214–222. https://doi.org/10.1016/S1002-0160(11)60120-3
  • Upadhyay, S. K., Singh, G., & Singh, D. P. (2016). Mechanism and understanding of PGPR: An approach for sustainable agriculture under a biotic stresses. Microbes and Environmental Management, Stadum, 1(2), 225–254.
  • Upadhyay, S. K., Srivastava, A. K., Rajput, V. D., Chauhan, P. K., Bhojiya, A. A., Jain Chaubey, G., Sharma, D. B., Minkina, T., Sharma, B., & Minkina, T. (2022). Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Frontiers in Microbiology, 2420. https://doi.org/10.3389/fmicb.2022.916488
  • Valderrama, R., Corpas, F. J., Carreras, A., Gomez-Rodriguez, M. V., Chaki, M., Pedrajas, J. R., Fernandez-Ocana, A., Del Rio, L. A., & Barroso, J. B. (2006). The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant, Cell & Environment, 29(7), 1449–1459. https://doi.org/10.1111/j.1365-3040.2006.01530.x
  • Venkatesh, J., & Park, S. W. (2014). Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies, 55(1), 1–19. https://doi.org/10.1186/1999-3110-55-38
  • Waditee, R., Bhuiyan, M. N., Rai, V., Aoki, K., Tanaka, Y., Hibino, T., Suzuki, S., Takano, J., Jagendorf, A. T., Takabe, T., & Takabe, T. (2005). Genes for direct methylation of glycine provide high levels of glycine betaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1318–1323. https://doi.org/10.1073/pnas.0409017102
  • Wakeel, A., Sumer, A., Hanstein, S., Yan, F., & Schubert, S. (2011). In vitro effect of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiology and Biochemistry : PPB / Societe Francaise de Physiologie Vegetale, 49(3), 341–345. https://doi.org/10.1016/j.plaphy.2011.01.006
  • Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., & Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67(6), 589–602. https://doi.org/10.1007/s11103-008-9340-6
  • Wang, J., & Huang, R. (2019). Modulation of ethylene and ascorbic acid on reactive oxygen species scavenging in plant salt response. Frontiers in Plant Science, 10, 319. https://doi.org/10.3389/fpls.2019.00319
  • Wang, L., Sun, X., Li, S., Zhang, T., Zhang, W., & Zhai, P. (2014). Application of organic amendments to a coastal saline soil in north china: effects on Soil Physical and Chemical Properties and Tree Growth. PLoS ONE, 9(2), e89185. https://doi.org/10.1371/journal.pone.0089185
  • Wang, Z., Xiao, Y., Chen, W., Tang, K., & Zhang, L. (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. Journal of Integrative Plant Biology, 52(4), 400–409. https://doi.org/10.1111/j.1744-7909.2010.00921.x
  • Wani, M. A., Jan, N., Qazi, H. A., Andrabi, K. I., & John, R. (2018). Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L. Acta Physiologiae Plantarum / Polish Academy of Sciences, Committee of Plant Physiology Genetics and Breeding, 40(9), 167. https://doi.org/10.1007/s11738-018-2747-z
  • Wichern, F., Islam, M. R., Hemkemeyer, M., Watson, C., & Joergensen, R. G. (2020). Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front Sustain Food System, 4, 30. https://doi.org/10.3389/fsufs.2020.00030
  • Williams, R. J., Spencer, J. P., & Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biology & Medicine, 36(7), 838–849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
  • Wolf, S. (2022). Cell wall signaling in plant development and defense. Annual Review of Plant Biology, 73(1), 323–353. https://doi.org/10.1146/annurev-arplant-102820-095312
  • Wu, F., Yang, H., Chang, Y., Cheng, J., Bai, S., & Yin, J. (2012). Effects of nitric oxide on reactive oxygen species and antioxidant capacity in Chinese Bayberry during storage. Science Horticult, 135, 106–111. https://doi.org/10.1016/j.scienta.2011.12.011
  • Yildirim, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., & Parlakova, F. (2015). Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Archives of Agronomy and Soil Science, 61(12), 1673–1689. https://doi.org/10.1080/03650340.2015.1030611
  • Yilmaz, H., & Kulaz, H. (2019). The effects of plant growth promoting rhizobacteria on antioxidant activity in chickpea (Cicer arietinum L.) under salt stress. Legume Research, 42, 72–76. https://doi.org/10.18805/LR-435
  • Yu, C., Yan, M., Dong, H., Luo, J., Ke, Y., Guo, A., Chen, Y., Zhang, J., & Huang, X. (2021). Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant Science, 302, 110676. https://doi.org/10.1016/j.plantsci.2020.110676
  • Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G., & Luo, L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding : New Strategies in Plant Improvement, 39(3), 47. https://doi.org/10.1007/s11032-019-0954-y
  • Zhang, C., Liu, J., Zhang, Y., Cai, X., Gong, P., Zhang, J., Wang, T., Li, H., & Ye, Z. (2011). Overexpression of SlGmes leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep, 30(3), 389–398. https://doi.org/10.1007/s00299-010-0939-0
  • Zhang, X., Tang, W., Liu, J., & Liu, Y. (2014). Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol, 20(4), 717–722.
  • Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2020). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal Advertisement Resource, 29, 207–221. https://doi.org/10.1016/j.jare.2020.10.003
  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. Cell Press, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017
  • Zhou, Y., Diao, M., Chen, X., Cui, J., Pang, S., Li, Y., Hou, C., & Liu, H. (2019). Application of exogenous glutathione confers salinity stress tolerance in tomato seedlings by modulating ions homeostasis and polyamine metabolism. Scientia Horticulturae, 250, 45–58. https://doi.org/10.1016/j.scienta.2019.02.026
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71. https://doi.org/10.1016/s1360-1385(00)01838-0
  • Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y.-L., & Wu, R. (1998). Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Science, 139(1), 41–48. https://doi.org/10.1016/S0168-9452(98)00175-7
  • Zhu, H., Traore, K., Santo, A., Trush, M. A., & Li, Y. R. (2016). Oxygen and oxygen toxicity: The birth of concepts. Reactive Oxygen Species, 1(1), 1–8. https://doi.org/10.20455/ros.2016.801
  • Zulfiqar, F., Akram, N. A., & Ashraf, M. (2020). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 251(1), 3. https://doi.org/10.1007/s00425-019-03293-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.