297
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Biotechnological impacts of Halomonas: a promising cell factory for industrially relevant biomolecules

, & ORCID Icon
Received 15 Jul 2022, Accepted 27 Sep 2022, Published online: 17 Oct 2022

References

  • Abdelkafi, S., Sayadi, S., Ali Gam, Z. B., Casalot, L., & Labat, M. (2006). Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiology Letters, 262(1), 115–120. https://doi.org/10.1111/j.1574-6968.2006.00381.x
  • Abdrabo, A. A. M., Ibrahim, A. H. H., Hassan, S. W., & Abdul-Raouf, M. U. (2018). Antimicrobial and anti-tumor activities of exopolysaccharides produced by the biofilm of marine Halomonas saccharevitans AB2 isolated from Suez Gulf, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 22(5), 99–119. https://doi.org/10.21608/EJABF.2018.22007
  • Amjres, H., Bejar, V., Quesada, E., Carranza, D., Abrini, J., Sinquin, C., Ratiskol, J., Colliec-Jouault, S., & Llamas, I. (2015). Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. International Journal of Biological Macromolecules, 72, 117–124. https://doi.org/10.1016/j.ijbiomac.2014.07.052
  • Amoozegar, M. A., Ghazanfari, N., & Didari, M. (2012). Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progress in Biological Sciences, 2(1), 1–11. https://doi.org/10.22059/PBS.2012.24820
  • Arahal, D. R., & Ventosa, A. (2006). The family Halomonadaceae. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (3rd ed., Vol. 6, pp. 811–835), Proteobacteria: gamma subclass. Springer.
  • Arahal, D. R., Vreeland, R. H., Litchfield, C. D., Mormile, M. R., Tindall, B. J., Oren, A., Bejar, V., Quesada, E., & Ventosa, A. (2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2436–2446. https://doi.org/10.1099/ijs.0.65430-0
  • Arai, S., Yonezawa, Y., Ishibashi, M., Matsumoto, F., Adachi, M., Tamada, T., Tokunaga, H., Blaber, M., Tokunag, M., & Kuroki, R. (2014). Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593. Acta Crystallographica: Section D, Biological Crystallography, 70(3), 811–820. https://doi.org/10.1107/S1399004713033609
  • Arco, Y., Llamas, I., Martínez-Checa, F., Argandona, M., Quesada, E., & Del Moral, A. (2005). epsABCJ genes are involved in the biosynthesis of the exopolysaccharide mauran produced by Halomonas maura. Microbiology (Reading, England), 151(9), 2841–2851. https://doi.org/10.1099/mic.0.27981-0
  • Arias, S., Del Moral, A., Ferrer, M. R., Tallon, R., Quesada, E., & Bejar, V. (2003). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles, 7(4), 319–326. https://doi.org/10.1007/s00792-003-0325-8
  • Asksonthong, R., Siripongvutikorn, S., & Usawakesmanee, W. (2018). Heavy metal removal ability of Halomonas elongata and Tetragenococcus halophilus in a media model system as affected by pH and incubation time. International Food Research Journal, 25(1), 234–240.
  • Aston, J. E., & Peyton, B. M. (2007). Response of Halomonas campisalis to saline stress: Changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiology Letters, 274(2), 196–203. https://doi.org/10.1111/j.1574-6968.2007.00851.x
  • Biswas, J., Bose, P., Mandal, S., & Paul, A. K. (2018). Reduction of hexavalent chromium by a moderately halophilic bacterium, Halomonas smyrnensis KS802 under saline environment. Environmental Sustainability, 1(4), 411–423. https://doi.org/10.1007/s42398-018-00037-x
  • Biswas, J., Ganguly, J., & Paul, A. K. (2015). Partial characterization of an extracellular polysaccharide produced by a moderately halophilic bacterium Halomonas xianhensis SUR308. Biofouling, 31(9–10), 735–744. https://doi.org/10.1080/08927014.2015.1106479
  • Biswas, J., Mandal, S., & Paul, A. K. (2015). Production, partial purification and some bio-physicochemical properties of EPS produced by Halomonas xianhensis SUR308 isolated from a saltern environment. Journal of Biologically Active Products from Nature, 5(2), 108–119. https://doi.org/10.1080/22311866.2015.1038852
  • Biswas, J., & Paul, A. K. (2017). Diversity and production of extracellular polysaccharide by halophilic microorganisms. Biodiversity International Journal, 1(2), 32–39. https://doi.org/10.15406/bij.2017.01.00006
  • Bouchotroch, S., Quesada, E., Del Moral, A., Llamas, I., & Bejar, V. (2001). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 51(5), 1625–1632. https://doi.org/10.1099/00207713-51-5-1625
  • Cai, L., Tan, D., Aibaidula, G., Dong, X. R., Chen, J. C., Tian, W. D., & Chen, G. Q. (2011). Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships. Microbial Cell Factories, 10(1), 1–15. https://doi.org/10.1186/1475-2859-10-88
  • Calvo, C., Martinez-Checa, F., Toledo, F. L., Porcel, J., & Quesada, E. (2002). Characteristics of bioemulsifiers synthesized in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Applied Microbiology and Biotechnology, 60(3), 347–351. https://doi.org/10.1007/s00253-002-1115-4
  • Cánovas, D., Vargas, C., Kneip, S., Moron, M. J., Ventosa, A., Bremer, E., & Nieto, J. J. (2000). Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043the EMBL accession number for the sequence reported in this paper is AJ238780. Microbiology (Reading, England), 146(2), 455–463. https://doi.org/10.1099/00221287-146-2-455
  • Carlson, R. P., Oshota, O., Shipman, M., Caserta, J. A., Hu, P., Saunders, C. W., Xu, J., Jay, Z. J., Reeder, N., Richards, A., Pettigrew, C., & Peyton, B. M. (2016). Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles, 20(3), 261–274. https://doi.org/10.1007/s00792-015-0806-6
  • Chandra, P., & Singh, D. P. (2014). Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from Sambhar salt lake Rajasthan (India). Cellular and Molecular Biology, 60(5), 64–72.
  • Cheffi, M., Hentati, D., Chebbi, A., Mhiri, N., Sayadi, S., Marques, A. M., & Chamkha, M. (2020). Isolation and characterization of a newly naphthalene-degrading Halomonas pacifica, strain Cnaph3: Biodegradation and biosurfactant production studies. 3 Biotech, 10(3), 1–15. https://doi.org/10.1007/s13205-020-2085-x
  • Chen, G. Q., & Jiang, X. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016
  • Chikkanna, A., Ghosh, D., & Kishore, A. (2018). Expression and characterization of a potential exopolysaccharide from a newly isolated halophilic thermotolerant bacteria Halomonas nitroreducens strain WB1. PeerJ, 6, 4684. https://doi.org/10.7717/peerj.4684
  • Coronado, M. J., Vargas, C., Hofemeister, J., Ventosa, A., & Nieto, J. J. (2000). Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiology Letters, 183(1), 67–71. https://doi.org/10.1111/j.1574-6968.2000.tb08935.x
  • Cristea, A., Baricz, A., Leopold, N., Floare, C. G., Borodi, G., Kacso, I., Tripon, S., Bulzu, P. A., Andrei, A.-S., Cadar, O., Levei, E. A., & Banciu, H. L. (2018). Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fara Fund Lake (Transylvanian Basin, Romania). Journal of Applied Microbiology, 125(5), 1343–1357. https://doi.org/10.1111/jam.14029
  • Cummings, S. P., & Gilmour, D. J. (1995). The effect of NaCl on the growth of a Halomonas species: Accumulation and utilization of compatible solutes. Microbiology (Reading, England), 141(6), 1413–1418. https://doi.org/10.1099/13500872-141-6-1413
  • de la Haba, R. R., Arahal, D. R., Marquez, M. C., & Ventosa, A. (2010). Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 60(4), 737–748. https://doi.org/10.1099/ijs.0.013979-0
  • de la Haba, R. R., Marquez, M. C., Papke, R. T., & Ventosa, A. (2012). Multilocus sequence analysis of the family Halomonadaceae. International Journal of Systematic and Evolutionary Microbiology, 62(3), 520–538. https://doi.org/10.1099/ijs.0.032938-0
  • de la Haba, R. R., Sanchez-Porro, C., & Ventosa, A. (2011). Taxonomy, phylogeny and biotechnological interest of the family Halomonadaceae. In A. Ventosa, A. Oren, & Y. Ma (Eds.), Halophiles and hypersaline environments (pp. 27–64). Springer. https://doi.org/10.1007/978-3-642-20198-1_3
  • de Souza, P. M. (2010). Application of microbial α-amylase in industry-A review. Brazilian Journal of Microbiology, 41(4), 850–861. https://doi.org/10.1590/S1517-83822010000400004
  • de Souza, M. P., Amini, A., Dojka, M. A., Pickering, I. J., Dawson, S. C., Pace, N. R., & Terry, N. (2001). Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Applied and Environmental Microbiology, 67(9), 3785–3794. https://doi.org/10.1128/AEM.67.9.3785-3794.2001
  • Dhasayan, A., Kiran, G. S., & Selvin, J. (2014). Production and Characterization of Glycolipid Biosurfactant by Halomonas sp. MB-30 for Potential Application in Enhanced oil Recovery. Applied Biochemistry and Biotechnology, 174(7), 2571–2584. https://doi.org/10.1007/s12010-014-1209-3
  • Diaz-Cardenas, C., Cantillo, A., Rojas, L. Y., Sandoval, T., Fiorentino, S., Robles, J., Ramos, F. A., Zambrano, M. M., & Baena, S. (2017). Microbial diversity of saline environments: Searching for cytotoxic activities. AMB Express, 7(1), 1–16. https://doi.org/10.1186/s13568-017-0527-6
  • Diken, E., Ozer, T., Arikan, M., Emrence, Z., Oner, E. T., Ustek, D., & Arga, K. Y. (2015). Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. SpringerPlus, 4(1), 1–11. https://doi.org/10.1186/s40064-015-1184-3
  • Dobson, S. J., McMeekin, T. A., & Franzmann, P. D. (1993). Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. International Journal of Systematic and Evolutionary Microbiology, 43(4), 665–673. https://doi.org/10.1099/00207713-43-4-665
  • Donio, M. B. S., Ronica, F. A., Viji, V. T., Velmurugan, S., Jenifer, J. S. C. A., Michaelbabu, M., Dhar, P., & Citarasu, T. (2013). Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus, 2(1), 149. https://doi.org/10.1186/2193-1801-2-149
  • Dubey, S., & Mishra, S. (2021). Efficient production of polyhydroxyalkanoate through halophilic bacteria utilizing algal biodiesel waste residue. Frontiers in Bioengineering and Biotechnology, 9, 85. https://doi.org/10.3389/fbioe.2021.624859
  • Edbeib, M. F., Wahab, R. A., & Huyop, F. (2016). Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology & Biotechnology, 32(8), 1–23. https://doi.org/10.1007/s11274-016-2081-9
  • Eslami, M., Amoozegar, M. A., & Asad, S. (2016). Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. International Journal of Biological Macromolecules, 85, 111–116. https://doi.org/10.1016/j.ijbiomac.2015.12.065
  • Fatollahi, P., Ghasemi, M., Yazdian, F., & Sadeghi, A. (2021). Ectoine production in bioreactor by Halomonas elongata DSM2581: Using MWCNT and Fe-nanoparticle. Biotechnology Progress, 37(1), e3073. https://doi.org/10.1002/btpr.3073
  • Fernandez, A. B., Vera-Gargallo, B., Sanchez-Porro, C., Ghai, R., Papke, R. T., Rodriguez-Valera, F., & Ventosa, A. (2014). Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Frontiers in Microbiology, 5, 196. https://doi.org/10.3389/fmicb.2014.00196
  • Focardi, S., Pepi, M., Landi, G., Gasperini, S., Ruta, M., DiBiasio, P., & Focardi, S. E. (2012). Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. International Biodeterioration & Biodegradation, 66(1), 63–70. https://doi.org/10.1016/j.ibiod.2011.11.003
  • Francis, A. J., Dodge, C. J., Gillow, J. B., & Papenguth, H. W. (2000). Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Environmental Science & Technology, 34(11), 2311–2317. https://doi.org/10.1021/es991251e
  • Gadda, G., & McAllister-Wilkins, E. E. (2003). Cloning, expression, and purification of choline dehydrogenase from the moderate halophile Halomonas elongata. Applied and Environmental Microbiology, 69(4), 2126–2132. https://doi.org/10.1128/AEM.69.4.2126-2132.2003
  • Gao, M., Du, D., Bo, Z., & Sui, L. (2019). Poly-β-hydroxybutyrate (PHB)-accumulating Halomonas improves the survival, growth, robustness and modifies the gut microbial composition of Litopenaeus vannameipost larvae. Aquaculture, 500, 607–612. https://doi.org/10.1016/j.aquaculture.2018.10.032
  • Garrity, G. M., Bell, J. A., & Lilburn, T. G. (2003). Taxonomic outline of the Procaryotes. In D. R. Boone & R. W. Castenholz (Eds.), Bergey’s manual of systematic bacteriology (2nd ed.). New York: Springer-Verlag. doi:10.1007/bergeysoutline200405.
  • Ghate, S. D., Arun, A. B., Rao, S. S., Kumar, S. T., Kandiyil, M. K., Saptami, K., & Rekha, P. D. (2021). Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29T reveals its exopolysaccharide and pigment producing capabilities. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-81395-1
  • Grammann, K., Volke, A., & Kunte, H. J. (2002). New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. Journal of Bacteriology, 184(11), 3078–3085. https://doi.org/10.1128/JB.184.11.3078-3085.2002
  • Gunaratnam, M., & Grant, M. H. (2008). Cr(vi) inhibits DNA, RNA and protein syntheses in hepatocytes: Involvement of glutathione reductase, reduced glutathione and DT-diaphorase. Toxicology in Vitro, 22(4), 879–886. https://doi.org/10.1016/j.tiv.2008.01.005
  • Guo, G., Hao, J., Tian, F., Liu, C., Ding, K., Xu, J., Zhou, W., & Guan, Z. (2020). Decolorization and detoxification of azo dye by halo-alkaliphilic bacterial consortium: Systematic investigations of performance, pathway and metagenome. Ecotoxicology and Environmental Safety, 204, 111073. https://doi.org/10.1016/j.ecoenv.2020.111073
  • Guo, J., Zhou, J., Wang, D., Tian, C., Wang, P., & Uddin, M. S. (2008). A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation, 19(1), 15–19. https://doi.org/10.1007/s10532-007-9110-1
  • Gutierrez-Arnillas, E., Arellano, M., Deive, F. J., Rodriguez, A., & Sanroman, M. A. (2017). Unravelling the suitability of biological induction for halophilic lipase production by Halomonas sp. LM1C cultures. Bioresource Technology, 239, 368–377. https://doi.org/10.1016/j.biortech.2017.04.128
  • Gutierrez, T., Biller, D. V., Shimmield, T., & Green, D. H. (2012). Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals, 25(6), 1185–1194. https://doi.org/10.1007/s10534-012-9581-3
  • Gutierrez, T., Mulloy, B., Black, K., & Green, D. H. (2007). Glycoprotein emulsifiers from two marine Halomonas species: Chemical and physical characterization. Journal of Applied Microbiology, 103(5), 1716–1727. https://doi.org/10.1111/j.1365-2672.2007.03407.x
  • Guzman, H., Van Thuoc, D., Martín, J., Hatti-Kaul, R., & Quillaguaman, J. (2009). A process for the production of ectoine and poly (3-hydroxybutyrate) by Halomonas boliviensis. Applied Microbiology and Biotechnology, 84(6), 1069–1077. https://doi.org/10.1007/s00253-009-2036-2
  • Hajizadeh, N., Heris, Y. S., Vahed, S. Z., Vallipour, J., Hejazi, M. A., Golabi, S. M., Zeynali, A., & Hejazi, M. S. (2015). Biodegradation of para amino acetanilide by Halomonas sp. TBZ3. Jundishapur Journal of Microbiology, 8(9). https://doi.org/10.5812/jjm.18622
  • He, J., Zhen, Q., Qiu, N., Liu, Z., Wang, B., Shao, Z., & Yu, Z. (2009). Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a’ using response surface methodology. Bioresource Technology, 100(23), 5922–5927. https://doi.org/10.1016/j.biortech.2009.06.087
  • Homann, V. V., Sandy, M., Tincu, J. A., Templeton, A. S., Tebo, B. M., & Butler, A. (2009). Loihichelins A− F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. Journal of Natural Products, 72(5), 884–888. https://doi.org/10.1021/np800640h
  • Jain, R., Jha, S., Mahatma, M. K., Jha, A., & Kumar, G. N. (2016). Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay. Journal of Environmental Science and Health, Part A, 51(6), 478–486. https://doi.org/10.1080/10934529.2015.1128717
  • Jiang, X. R., Yao, Z. H., & Chen, G. Q. (2017). Controlling cell volume for efficient PHB production by Halomonas. Metabolic Engineering, 44, 30–37. https://doi.org/10.1016/j.ymben.2017.09.004
  • Kahrarian, Z., Taran, M., Alimoradi, M., & Tajehmiri, A. (2019). Biological removal of cadmium by Halomonas elongata IBRC-M10433 in different conditions: Optimization by Taguchi statistical approach. Asian Journal of Research in Biosciences, 1(1), 7–13.
  • Kanapathipillai, M., Lentzen, G., Sierks, M., & Park, C. B. (2005). Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s β-amyloid. FEBS Letters, 579(21), 4775–4780. https://doi.org/10.1016/j.febslet.2005.07.057
  • Kaniuk, Ł., & Stachewicz, U. (2021). Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomaterials Science & Engineering, 7(12), 5339–5362. https://doi.org/10.1021/acsbiomaterials.1c00757
  • Kawata, Y., & Aiba, S. I. (2010). Poly (3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Bioscience, Biotechnology, and Biochemistry, 0912011758. https://doi.org/10.1016/j.jbiosc.2011.11.018
  • Kayanadath, S., Nathan, V. K., & Ammini, P. (2019). Anti-biofilm activity of biosurfactant derived from Halomonas sp., a lipolytic marine bacterium from the Bay of Bengal. Microbiology (Reading, England), 88(5), 585–599. https://doi.org/10.1134/S0026261719050072
  • Khmaissa, M., Hadrich, B., Chamkha, M., Sayari, A., & Fendri, A. (2021). Production of a halotolerant lipase from Halomonas sp. strain C2SS100: Optimization by response-surface methodology and application in detergent formulations. Journal of Surfactants and Detergents. https://doi.org/10.1002/jsde.12563
  • Kim, K. K., Lee, K. C., Oh, H. M., & Lee, J. S. (2010). Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. International Journal of Systematic and Evolutionary Microbiology, 60(2), 369–377. https://doi.org/10.1099/ijs.0.004424-0
  • Kleinsteuber, S., Müller, R. H., & Babel, W. (2001). Expression of the 2, 4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolates, Halomonas sp. EF43. Extremophiles, 5(6), 375–384. https://doi.org/10.1007/s007920100202
  • Kshirsagar, P. R., Suttar, R., Nilegaonkar, S. S., Pradhan, S., & Kanekar, P. P. (2013). Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. Journal of Biochemical Technology, 4(1), 512–517.
  • Kucera, D., Pernicova, I., Kovalcik, A., Koller, M., Mullerova, L., Sedlacek, P., Mravec, F., Nebesarova, J., Kalina, M., Marova, I., Krzyzanek, V., & Obruca, S. (2018). Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresource Technology, 256, 552–556. https://doi.org/10.1016/j.biortech.2018.02.062
  • Kulkarni, S. O., Kanekar, P. P., Jog, J. P., Sarnaik, S. S., & Nilegaonkar, S. S. (2015). Production of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes. International Journal of Biological Macromolecules, 72, 784–789. https://doi.org/10.1016/j.biortech.2011.03.054
  • Kumar, S., Karan, R., Kapoor, S., Singh, S. P., & Khare, S. K. (2012). Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazilian Journal of Microbiology, 43(4), 1595–1603. https://doi.org/10.1590/S1517-838220120004000044
  • Kunte, H. J., Lentzen, G., & Galinski, E. (2014). Industrial production of the cell protectant ectoine: Protection mechanisms, processes, and products. Current Biotechnology, 3(1), 10–25. https://doi.org/10.2174/22115501113026660037
  • Lang, Y. J., Bai, L., Ren, Y. N., Zhang, L. H., & Nagata, S. (2011). Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles, 15(2), 303–310. https://doi.org/10.1007/s00792-011-0360-9
  • Ling, C., Qiao, G. Q., Shuai, B. W., Olavarria, K., Yin, J., Xiang, R. J., Song, K. N., Shen, Y. H., Guo, Y., & Chen, G. Q. (2018). Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metabolic Engineering, 49, 275–286. https://doi.org/10.1016/j.ymben.2018.09.007
  • Li, T. T., Qu, A., Yuan, X. N., Tan, F. X., Li, X. W., Wang, T., & Zhang, L. H. (2017). Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02. In IOP conference series: Earth and environmental science (Vol. 77, No. 1, p. 12019). IOP Publishing.
  • Liu, J., Li, F., Liu, L., Jiang, P., & Liu, Z. (2013). Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodiniumsp.(pyrrophyta). Chinese Journal of Oceanology and Limnology, 31(6), 1241–1247. https://doi.org/10.1007/s00343-013-3160-5
  • Liu, M., Liu, H., Shi, M., Jiang, M., Li, L., & Zheng, Y. (2021). Microbial production of ectoine and hydroxyectoine as high-value chemicals. Microbial Cell Factories, 20(1), 1–11. https://doi.org/10.1186/s12934-021-01567-6
  • Llamas, I., Amjres, H., Mata, J. A., Quesada, E., & Bejar, V. (2012). The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules, 17(6), 7103–7120. https://doi.org/10.3390/molecules17067103
  • Ma, H., Zhao, Y., Huang, W., Zhang, L., Wu, F., Ye, J., & Chen, G. Q. (2020). Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-17223-3
  • Mabrouk, M. E., Arayes, M. A., & Sabry, S. A. (2014). Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent. Biotechnology & Biotechnological Equipment, 28(4), 659–667. https://doi.org/10.1080/13102818.2014.937092
  • Martin, D., Dodds, K., Butler, I. B., & Ngwenya, B. T. (2013). Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification. Environmental Science & Technology, 47(15), 8692–8699. https://doi.org/10.1021/es401270q
  • Martinez-Checa, F., Toledo, F., Vilchez, R., Quesada, E., & Calvo, C. (2002). Yield production, chemical composition, and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Applied Microbiology and Biotechnology, 58(3), 358–363. https://doi.org/10.1007/s00253-001-0903-6
  • Mata, J. A., Martinez-Canovas, J., Quesada, E., & Bejar, V. (2002). A detailed phenotypic characterisation of the type strains of Halomonas species. Systematic and Applied Microbiology, 25(3), 360–375. https://doi.org/10.1078/0723-2020-00122
  • Matsui, T., & Nishino, T. (2016). Transposon‐mediated random gene disruption with moderate halophilic bacteria and its application for halophilic bacterial siderophore analysis. Journal of Basic Microbiology, 56(12), 1354–1359. https://doi.org/10.1002/jobm.201600121
  • Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial Cell Factories, 19(1), 1–30. https://doi.org/10.1186/s12934-020-01342-z
  • Mnif, S., Chamkha, M., & Sayadi, S. (2009). Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. Journal of Applied Microbiology, 107(3), 785–794. https://doi.org/10.1111/j.1365-2672.2009.04251.x
  • Moharrery, L., Otadi, M., Miraly, N., Rezaei Zangeneh, M. M., & Amiri, R. (2019). Degradation of toluidine red, an oil soluble azo dye by Halomonas strain IP8 at alkaline condition. Chemical Engineering Communications, 206(1), 61–68. https://doi.org/10.1080/00986445.2018.1472587
  • Montanez-Barragan, B., Sanz-Martin, J. L., Gutierrez Macias, P., Morato-Cerro, A., Rodriguez-Vazquez, R., & Barragan-Huerta, B. E. (2020). Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor. Extremophiles, 24(2), 239–247. https://doi.org/10.1007/s00792-019-01149-w
  • Monzon, C. G., Nisenbaum, M., Herrera Seitz, M. K., & Murialdo, S. E. (2018). New findings on aromatic compounds’ degradation and their metabolic pathways, the biosurfactant production and motility of the halophilic bacterium Halomonas sp. KHS3. Current Microbiology, 75(8), 1108–1118. https://doi.org/10.1007/s00284-018-1497-x
  • Moreno, M. D. L., Sanchez-Porro, C., Piubeli, F., Frias, L., Garcia, M. T., & Mellado, E. (2011). Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans. PloS One, 6(6), e21049. https://doi.org/10.1371/journal.pone.0021049
  • Mukherjee, P., Mitra, A., & Roy, M. (2019). Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Frontiers in Microbiology, 10, 1207. https://doi.org/10.3389/fmicb.2019.01207
  • Murugavelh, S., & Mohanty, K. (2012). Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp. Chemical Engineering Journal, 203, 415–422. https://doi.org/10.1016/j.cej.2012.07.069
  • Murugavelh, S., & Mohanty, K. (2013). Bioreduction of chromate by immobilized cells of Halomonas sp. International Journal of Energy and Environment, 4(2), 349–356.
  • Murugavelh, S., & Mohanty, K. (2018). Performance of Halomonas sp. to reduce hexavalent chromium in batch and continuous fixed film reactor. Journal of Environmental Chemical Engineering, 6(2), 2561–2567. https://doi.org/10.1016/j.jece.2018.03.037
  • Nanca, C. L., Neri, K. D., Ngo, A. C. R., Bennett, R. M., & Dedeles, G. R. (2018). Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from luzon salt beds. Journal of Health and Pollution, 8(19). https://doi.org/10.5696/2156-9614-8.19.180915
  • Nikolova, C., & Gutierrez, T. (2021). Biosurfactants and their applications in the oil and gas industry: Current state of knowledge and future perspectives. Frontiers in Bioengineering and Biotechnology, 9, 46. https://doi.org/10.3389/fbioe.2021.626639
  • Ojima, T., Saburi, W., Yamamoto, T., & Kudo, T. (2012). Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-D-glucosylglycerol. Applied and Environmental Microbiology, 78(6), 1836–1845. https://doi.org/10.1128/AEM.07514-11
  • Oncescu, T., Oancea, P., Enache, M., Popescu, G., Dumitru, L., & Kamekura, M. (2007). Halophilic bacteria are able to decontaminate dichlorvos, a pesticide, from saline environments. Open Life Sciences, 2(4), 563–573. https://doi.org/10.2478/s11535-007-0037-7
  • Oren, A. (2006). The order Haloanaerobiales. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes. A handbook on the biology of bacteria (Vol. 4, 3rd ed., pp. 804–817). Springer.
  • Oueriaghli, N., González-Domenech, C. M., Martínez-Checa, F., Muyzer, G., Ventosa, A., Quesada, E., & Béjar, V. (2014). Diversity and distribution of Halomonas in Rambla Salada, a hypersaline environment in the southeast of Spain. FEMS Microbiology Ecology, 87(2), 460–474. https://doi.org/10.1111/1574-6941.12237
  • Ouyang, P., Wang, H., Hajnal, I., Wu, Q., Guo, Y., & Chen, G. Q. (2018). Increasing oxygen availability for improving poly (3-hydroxybutyrate) production by Halomonas. Metabolic Engineering, 45, 20–31. https://doi.org/10.1016/j.ymben.2017.11.006
  • Pastor, J. M., Salvador, M., Argandona, M., Bernal, V., Reina-Bueno, M., Csonka, L. N., Iborra, J. L., Vargas, C., Nieto, J. J., & Canovas, M. (2010). Ectoines in cell stress protection: Uses and biotechnological production. Biotechnology Advances, 28(6), 782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005
  • Pepi, M., Cesaro, A., Liut, G., & Baldi, F. (2005). An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid. FEMS Microbiology Ecology, 53(1), 157–166. https://doi.org/10.1016/j.femsec.2004.09.013
  • Pinon-Castillo, H. A., Brito, E. M. S., Goni-Urriza, M., Guyoneaud, R., Duran, R., Nevarez-Moorillon, G. V., Gutierrez-Corona, J. F., Caretta, C. A., & Reyna-Lopez, G. E. (2010). Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. Journal of Applied Microbiology, 109(6), 2173–2182. https://doi.org/10.1111/j.1365-2672.2010.04849.x
  • Pleissner, D., Lam, W. C., Han, W., Lau, K. Y., Cheung, L. C., Lee, M. W., Lei, H. M., Lo, K. Y., Ng, W. Y., Sun, Z., Melikoglu, M., & Lin, C. S. K. (2014). Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste. BioMed Research International, 2014, 1–8. https://doi.org/10.1155/2014/819474
  • Poli, A., Moriello, V. S., Esposito, E., Lama, L., Gambacorta, A., & Nicolaus, B. (2004). Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnology Letters, 26(21), 1635–1643. https://doi.org/10.1007/s10529-004-3187-y
  • Pourbabaee, A. A., Bostani, S., Amozzegar, M. A., & Naddaf, R. (2011). Decolorization of cibacron black w-55 under alkaline conditions by new strain of Halomonas sp. isolated from textile effluent. Iranian Journal of Chemistry and Chemical Engineering, 30(4), 63–70. https://doi.org/10.30492/IJCCE.2011.6091
  • Prabhu, J., Schauwecker, F., Grammel, N., Keller, U., & Bernhard, M. (2004). Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Applied and Environmental Microbiology, 70(5), 3130–3132. https://doi.org/10.1128/AEM.70.5.3130-3132.2004
  • Qin, Q., Ling, C., Zhao, Y., Yang, T., Yin, J., Guo, Y., & Chen, G. Q. (2018). CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metabolic Engineering, 47, 219–229. https://doi.org/10.1016/j.ymben.2018.03.018
  • Quesada, E., Bejar, V., & Calvo, C. (1993). Exopolysaccharide production by Volcaniella eurihalina. Experientia, 49(12), 1037–1041. https://doi.org/10.1007/BF01929910
  • Ren, Y., Ling, C., Hajnal, I., Wu, Q., & Chen, G. Q. (2018). Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Applied Microbiology and Biotechnology, 102(10), 4499–4510. https://doi.org/10.1007/s00253-018-8931-7
  • Riis, V., Kleinsteuber, S., & Babel, W. (2003). Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Canadian Journal of Microbiology, 49(11), 713–721. https://doi.org/10.1139/w03-083
  • Roberts, M. F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1(1), 5. https://doi.org/10.1186/1746-1448-1-5
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8
  • Ruiz-Ruiz, C., Srivastava, G. K., Carranza, D., Mata, J. A., Llamas, I., Santamaria, M., Quesada, E., & Molina, I. J. (2011). An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Applied Microbiology and Biotechnology, 89(2), 345–355. https://doi.org/10.1007/s00253-010-2886-7
  • Saglam, R. O., Genc, S., & Oner, E. T. (2020). Evaluation of the potential use of Levan polysaccharide in paper conservation. Advances in Polymer Technology, 2020, 1–9. https://doi.org/10.1155/2020/1416491
  • Selvi, S. S., Haskoylu, M. E., Genç, S., & Oner, E. T. (2021). Synthesis and characterization of levan hydrogels and their use for resveratrol release. Journal of Bioactive and Compatible Polymers, 36(6), 464–480. https://doi.org/10.1177/08839115211055725
  • Severin, J., Wohlfarth, A., & Galinski, E. A. (1992). The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. Microbiology (Reading, England), 138(8), 1629–1638. https://doi.org/10.1099/00221287-138-8-1629
  • Seyedi, Z. S., Zahraei, Z., & Jookar Kashi, F. (2020). Decolorization of reactive black 5 and reactive red 152 Azo dyes by new haloalkaliphilic bacteria isolated from the textile wastewater. Current Microbiology, 77(9), 2084–2092. https://doi.org/10.1007/s00284-020-02039-7
  • Shapovalova, A. A., Khijniak, T. V., Tourova, T. P., & Sorokin, D. Y. (2009). Halomonas chromatireducens sp. nov., a new denitrifying facultatively haloalkaliphilic bacterium from solonchak soil capable of aerobic chromate reduction. Microbiology (Reading, England), 78(1), 102–111. https://doi.org/10.1134/S0026261709010135
  • Sharma, D., Bhardwaj, K. K., & Gupta, R. (2022). Immobilization and applications of esterases. Biocatalysis and Biotransformation, 40(3), 153–168. https://doi.org/10.1080/10242422.2021.2013825
  • Shekhar, S., Sundaramanickam, A., & Balasubramanian, T. (2015). Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 45(14), 1522–1554. https://doi.org/10.1080/10643389.2014.955631
  • Shivanand, P., Mugeraya, G., & Kumar, A. (2013). Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Annals of Microbiology, 63(4), 1257–1263. https://doi.org/10.1007/s13213-012-0583-8
  • Stanley, A., Punil Kumar, H. N., Mutturi, S., & Vijayendra, S. V. (2018). Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain. Applied Biochemistry and Biotechnology, 184(3), 935–952. https://doi.org/10.1007/s12010-017-2601-6
  • Tanimura, K., Matsumoto, T., Nakayama, H., Tanaka, T., & Kondo, A. (2016). Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata. Enzyme and Microbial Technology, 89, 63–68. https://doi.org/10.1016/j.enzmictec.2016.03.006
  • Thomas, T., Sudesh, K., Bazire, A., Elain, A., Tan, H. T., Lim, H., & Bruzaud, S. (2020). PHA production and PHA synthases of the halophilic bacterium Halomonas sp. SF2003. Bioengineering, 7(1), 29. https://doi.org/10.3390/bioengineering7010029
  • Tsuji, A., Takei, Y., & Azuma, Y. (2022). Establishment of genetic tools for genomic DNA engineering of Halomonas sp. KM-1, a bacterium with potential for biochemical production. Microbial Cell Factories, 21(1), 122. https://doi.org/10.1186/s12934-022-01797-2
  • Velmurugan, S., Raman, K., Viji, V. T., Donio, M. B. S., Jenifer, J. A., Babu, M. M., & Citarasu, T. (2013). Screening and characterization of antimicrobial secondary metabolites from Halomonas salifodinae MPM-TC and its in vivo antiviral influence on Indian white shrimp Fenneropenaeus indicus against WSSV challenge. Journal of King Saud University-Science, 25(3), 181–190. https://doi.org/10.1016/j.jksus.2013.03.002
  • Vijayaraghavan, K., Lee, M. W., & Yun, Y. S. (2008). A new approach to study the decolorization of complex reactive dye bath effluent by biosorption technique. Bioresource Technology, 99(13), 5778–5785. https://doi.org/10.1016/j.biortech.2007.10.012
  • Vreeland, R. H., Litchfield, C. D., Martin, E. L., & Eliot, E. (1980). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. International Journal of Systematic Bacteriology, 30(2), 485–495. https://doi.org/10.1099/00207713-30-2-485
  • Vyrides, I., Agathangelou, M., Dimitriou, R., Souroullas, K., Salamex, A., Ioannou, A., & Koutinas, M. (2015). Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid. World Journal of Microbiology & Biotechnology, 31(8), 1291–1296. https://doi.org/10.1007/s11274-015-1876-4
  • Wang, T., Li, J., Zhang, L. H., Yu, Y., & Zhu, Y. M. (2017). Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl and ammonia nitrogen by Halomonas bacteria. Water Science and Technology, 76(2), 386–395. https://doi.org/10.2166/wst.2017.214
  • Wohlfarth, A., Severin, J., & Galinski, E. A. (1990). The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. Journal of General Microbiology, 136(4), 705–712. https://doi.org/10.1099/00221287-136-4-705
  • Yang, C., Wang, Z., Li, Y., Niu, Y., Du, M., He, X., Ma, C., Tang, H., & Xu, P. (2010). Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresource Technology, 101(17), 6778–6784. https://doi.org/10.1016/j.biortech.2010.03.108
  • Yoo, W., Kim, B., Jeon, S., Kim, K. K., & Kim, T. D. (2020). Identification, characterization, and immobilization of a novel YbfF esterase from Halomonas elongata. International Journal of Biological Macromolecules, 165, 1139–1148. https://doi.org/10.1016/j.ijbiomac.2020.09.247
  • Zhang, J., Jin, B., Hong, K., Lv, Y., Wang, Z., & Chen, T. (2021). Cell catalysis of citrate to itaconate by engineered Halomonas bluephagenesis. ACS Synthetic Biology, 10(11), 3017–3027. https://doi.org/10.1021/acssynbio.1c00320
  • Zhao, Q., Li, S., Lv, P., Sun, S., Ma, C., Xu, P., Su, H., & Yang, C. (2019). High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium. Microbial Cell Factories, 18(1), 1–12. https://doi.org/10.1186/s12934-019-1230-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.