302
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development

, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Received 03 Jun 2022, Accepted 29 Oct 2022, Published online: 05 Dec 2022

References

  • Abbasi, G. H., Akhtar, J., Anwar-Ul-Haq, M., Ali, S., Chen, Z., & Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46(1), 135–146.
  • Adem, G. D., Chen, G., Shabala, L., Chen, Z. H., & Shabala, S. (2020). GORK channel: A master switch of plant metabolism? Trends in Plant Science, 25(5), 434–445. https://doi.org/10.1016/j.tplants.2019.12.012
  • Adhikari, B., Dhungana, S. K., Kim, D. I. L., & Shin, D. H. (2020). Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences, 19(4), 261–269. https://doi.org/10.1016/j.jssas.2019.02.001
  • Adiloglu, S., Adiloglu, A., & Ozkil, M. (2007). Effect of different levels of NaCl and KCl on growth and some biological indexes of wheat plant. Pakistan Journal of Biological Sciences, 10(11), 1941–1943. https://doi.org/10.3923/pjbs.2007.1941.1943
  • Ahanger, M. A., & Agarwal, R. M. (2017). Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma, 254(4), 1471–1486. https://doi.org/10.1007/s00709-016-1037-0
  • Ahanger, M. A., Tomar, N. S., Tittal, M., Argal, S., & Agarwal, R. M. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23(4), 731–744. https://doi.org/10.1007/s12298-017-0462-7
  • Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., Ahmad, R., & Iqbal, M. A. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Journal of Plant Nutrition, 41(13), 1734–1743. https://doi.org/10.1080/01904167.2018.1459688
  • Ahmad, I., Devonshire, J., Mohamed, R., Schultze, M., & Maathuis, F. J. M. (2016). Overexpression of the potassium channel TPK b in small vacuoles confers osmotic and drought tolerance to rice. The New Phytologist, 209(3), 1040–1048. https://doi.org/10.1111/nph.13708
  • Ahn, S. J., Shin, R., & Schachtman, D. P. (2004). Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiology, 134(3), 1135–1145. https://doi.org/10.1104/pp.103.034660
  • Aksu, G., & Altay, H. (2020). The effects of potassium applications on drought stress in sugar beet. SugarTech, 22(6), 1092–1102. https://doi.org/10.1007/s12355-020-00851-w
  • Ali, M., Bakht, J., & Khan, G. D. (2014). Effect of water deficiency and potassium application on plant growth, osmolytes and grain yield of brassica napus cultivars. Acta Botanica Croatica, 73(2), 299–314. https://doi.org/10.2478/botcro-2014-0016
  • Almeida, D. M., Oliveira, M. M., & Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326–345. https://doi.org/10.1590/1678-4685-gmb-2016-0106
  • Amanullah, Iqbal, A., & Hidayat, Z. (2016). Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep34627
  • Amjad, M., Akhtar, J., Murtaza, B., Abbas, G., & Jawad, H. (2016). Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum lycopersicum L.) cultivars. Horticulture, Environment and Biotechnology, horticulture, Environment and Biotechnology, 57(3), 248–258. https://doi.org/10.1007/s13580-016-0035-7
  • Andrés, Z., Pérez-Hormaeche, J., Leidi, E. O., Schlücking, K., Steinhorst, L., McLachlan, D. H., Schumacher, K., Hetherington, A. M., Kudla, J., Cubero, B., & Pardo, J. M. (2014). Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences, 111(17), E1806–1814. https://doi.org/10.1073/pnas.1320421111
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Aranda-Sicilia, M. N., Aboukila, A., Armbruster, U., Cagnac, O., Schumann, T., Kunz, H.-H., Jahns, P., Rodríguez-Rosales, M. P., Sze, H., & Venema, K. (2016). Envelope K+/H+ antiporters AtKEA1 and AtKEA2 function in plastid development. Plant Physiology, 172(1), 441–449. https://doi.org/10.1104/pp.16.00995
  • Ardie, S. W., Xie, L., Takahashi, R., Liu, S., & Takano, T. (2009). Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. Journal of Experimental Botany, 60(12), 3491–3502. https://doi.org/10.1093/jxb/erp184
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Arino, J., Ramos, J., & Sychrová, H. (2010). Alkali metal cation transport and homeostasis in yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95–120. https://doi.org/10.1128/mmbr.00042-09
  • Armengaud, P., Breitling, R., & Amtmann, A. (2004). The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology, 136(1), 2556–2576. https://doi.org/10.1104/pp.104.046482
  • Asada, K., Osmond, C. B., Foyer, C. H., & Bock, G. (2000). The water–water cycle as alternative photon and electron sinks. Philosophical transactions of the Royal Society of London Series B Biological Sciences, 355(1402), 1419–1431. https://doi.org/10.1098/rstb.2000.0703
  • Ashfaq, A., Hussain, N., & Athar, M. (2015). Role of potassium fertilizers in plant growth, crop yield and quality fiber production of cotton–an overview. FUUAST Journal of Biology, 5(1), 27–35.
  • Ashraf, M. A., Ahmad, M. S. A., Ashraf, M., Al-Qurainy, F., & Ashraf, M. Y. (2011). Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop & Pasture Science, 62(1), 25–38. https://doi.org/10.1071/CP09225
  • Ashraf, K. U., Josts, I., Mosbahi, K., Kelly, S. M., Byron, O., Smith, B., & Walker, D. (2016). The potassium binding protein Kbp is a cytoplasmic potassium sensor. Structure, 24(5), 741–749. https://doi.org/10.1016/j.str.2016.03.017
  • Aslam, M., Zamir, M. S. I., Afzal, I., & Yaseen, M., Mubeen M., & Shoaib A. (2013). Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetări Agronomiceîn Moldova, 46(2), 99–114.
  • Assaha, D. V., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. https://doi.org/10.3389/fphys.2017.00509
  • Bahrami-Rad, S., & Hajiboland, R. (2017). Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: Comparison of root with foliar application. Annals of Agricultural Sciences, 62(2), 121–130. https://doi.org/10.1016/j.aoas.2017.08.001
  • Bandyopadhyay, A., Bose, I., Chattopadhyay, K., & Tripathi, T. (2019). Osmolytes ameliorate the effects of stress in the absence of the heat shock protein Hsp104 in Saccharomyces cerevisiae. PLoS One, 14(9), e0222723. https://doi.org/10.1371/journal.pone.0222723
  • Bao, A. K., Wang, S. M., Wu, G. Q., Xi, J. J., Zhang, J.-L., & Wang, C.-M. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 176(2), 232–240. https://doi.org/10.1016/j.plantsci.2008.10.009
  • Barragán, V., Leidi, E. O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J. A., Cubero, B., & Pardo, J. M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell, 24(3), 1127–1142. https://doi.org/10.1105/tpc.111.095273
  • Bassil, E., Tajima, H., Liang, Y. C., Ohto, M. A., Ushijima, K., Nakano, R., Esumi, T., Coku, A., Belmonte, M., & Blumwald, E. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23(9), 3482–3497. https://doi.org/10.1105/tpc.111.089581
  • Behera, S., Long, Y., Schmitz-Thom, I., Wang, X. P., Zhang, C., Li, H., Wu, W. H., Manishankar, P., Ren, X.-L., Offenborn, J. N., Wu, W.-H., Kudla, J., & Wang, Y. (2017). Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency. The New Phytologist, 213(2), 739–750. https://doi.org/10.1111/nph.14145
  • Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521–530. https://doi.org/10.1002/jpln.200420485
  • Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. https://doi.org/10.3389/fpls.2019.00157
  • Chakraborty, K., Bhaduri, D., Meena, H. N., & Kalariya, K. (2016). External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiology and Biochemistry, 103, 143–153. https://doi.org/10.1016/j.plaphy.2016.02.039
  • Chander, S. (2011). Annual review of fertilizer production and consumption. Indian Journal of Fertilisers, 7, 141–188.
  • Cha-Um, S., Siringam, K., Juntawong, N., & Kirdmanee, C. (2010). Water relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application. International Journal of Plant Production, 4, 187–198. https://doi.org/10.22069/IJPP.2012.695
  • Checchetto, V., Teardo, E., Carraretto, L., Leanza, L., & Szabo, I. (2016). Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1857(8), 1258–1266. https://doi.org/10.1016/j.bbabio.2016.03.011
  • Cheema, M. A., Wahid, M. A., Sattar, A., Rasul F., & Saleem M. F. (2012). Influence of different levels of potassium on growth, yield and quality of canola (Brassica napus L.) cultivars. Pakistan Journal of Agricultural Sciences, 49(2), 163–168.
  • Chen, H. T., CHEN, X., Wu, B. Y., Yuan, X. X., ZHANG, H.-M., CUI, X.-Y., & LIU, X.-Q. (2015). Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean. Journal of Integrative Agriculture, 14(6), 1171–1183. https://doi.org/10.1016/s2095-3119(14)60918-7
  • Cheng, X., Liu, X., Mao, W., Zhang, X., Chen, S., Zhan, K., Bi, H., & Xu, H. (2018). Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 19(12), 3969. https://doi.org/10.3390/ijms19123969
  • Chen, G., Liu, C., Gao, Z., Zhang, Y., Jiang, H., Zhu, L., Ren, D., Yu, L., Xu, G., & Qian, Q. (2017). OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Frontiers in Plant Science, 8, 1885. https://doi.org/10.3389/fpls.2017.01885
  • Chen, G., Liu, C., Gao, Z., Zhang, Y., Zhu, L., Hu, J., Ren, D., Xu, G., & Qian, Q. (2018). Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress. Environmental and Experimental Botany, 147, 147–156. https://doi.org/10.1016/j.envexpbot.2017.12.008
  • Chen, N., Tong, S., Tang, H., Zhang, Z., Liu, B., Lou, S., Liu, J., Liu, H., Ma, T., & Jiang, Y. (2020). The PalERF109 transcription factor positively regulates salt tolerance via PalHKT1; 2 in Populus alba var. pyramidalis. Tree Physiology, 40(6), 717–730. https://doi.org/10.1093/treephys/tpaa018
  • Chen, J., Zhang, H., Zhang, X., & Tang, M. (2017). Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Frontiers in Plant Science, 8, 1–14. eCollection 2017. https://doi.org/10.3389/fpls.2017.01739.
  • Cherel, I., Lefoulon, C., Boeglin, M., & Sentenac, H. (2014). Molecular mechanisms involved in plant adaptation to low K+ availability. Journal of Experimental Botany, 65(3), 833–848. https://doi.org/10.1093/jxb/ert402
  • Clifford, S. C., Arndt, S. K., Corlett, J. E., Joshi, S., Sankhla, N., Popp, M., & Jones, H. G. (1998). The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). Journal of Experimental Botany, 49(323), 967–977. https://doi.org/10.1093/jxb/49.323.967
  • Colpan, E., Zengin, M., & Özbahçe, A. (2013). The effects of potassium on the yield and fruit quality components of stick tomato. Horticulture, Environment, and Biotechnology, 54(1), 20–28. https://doi.org/10.1007/s13580-013-0080-4
  • Cotsaftis, O., Plett, D., Shirley, N., Tester, M., & Hrmova, M. (2012). A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One, 7(7), e39865. https://doi.org/10.1371/journal.pone.0039865
  • Cuellar, T., Pascaud, F., Verdeil, J. L., Torregrosa, L., Adam-Blondon, A. F., Thibaud, J. B., Sentenac, H., & Gaillard, I. A. (2010). A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1- protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. The Plant Journal, 61(1), 58–69. https://doi.org/10.1111/j.1365-313X.2009.04029.x
  • Cui, Y. N., Xia, Z. R., Ma, Q., Wang, W. Y., Chai, W.-W., & Wang, S.-M. (2019). The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. Plant Physiology and Biochemistry, 135, 489–498. https://doi.org/10.1016/j.plaphy.2018.11.011
  • Czempinski, K., Zimmermann, S., Ehrhardt, T., & Müller‐röber, B. (1997). New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. The EMBO Journal, 16(10), 2565–2575. https://doi.org/10.1093/emboj/16.10.2565
  • Dabravolski, S. A., & Isayenkov, S. V. (2021). New insights into plant TPK ion channel evolution. Plants, 10(11), 2328. https://doi.org/10.3390/plants10112328
  • Das, D., Sahoo, J., Raza, M. B., Barman, M., & Das, R. (2022). Ongoing soil potassium depletion under intensive cropping in India and probable mitigation strategies. A review. Agronomy for Sustainable Development, 42(1), 1–26. https://doi.org/10.1007/s13593-021-00728-6
  • Dawood, M. G., Abdelhamid, M. T., & Schmidhalter, U. (2014). Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.). The Journal of Horticultural Science and Biotechnology, 89(2), 185–192. https://doi.org/10.1080/14620316.2014.11513067
  • De Luca, A., Corell, M., Chivet, M., Parrado, M. A., Pardo, J. M., & Leidi, E. O. (2021). Reassessing the role of potassium in tomato grown with water shortages. Horticulturae, 7(2), 20. https://doi.org/10.3390/horticulturae7020020
  • Demidchik, V., & Maathuis, F. J. (2007). Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development. The New Phytologist, 175(3), 387–404. https://doi.org/10.1111/j.1469-8137.2007.02128.x
  • Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259–1270. https://doi.org/10.1093/jxb/eru004
  • Devi, B. S. R., Kim, Y. J., Selvi, S. K., Gayathri, S., Altanzul, K., Parvin, S., Yang, D. U., Lee, O. R., Lee, S., & Yang, D. C. (2012). Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russian Journal of Plant Physiology, 59(3), 318–325. https://doi.org/10.1134/s1021443712030041
  • Dias, A. S., & Lidon, F. C. (2010). Bread and durum wheat tolerance under heat stress: A synoptical overview. Emirates Journal of Food and Agriculture, 22(6), 412–436. https://doi.org/10.9755/ejfa.v22i6.4660
  • Dietrich, P., Moeder, W., & Yoshioka, K. (2020). Plant cyclic nucleotide-gated channels: New insights on their functions and regulation. Plant Physiology, 184(1), 27–38. https://doi.org/10.1104/pp.20.00425
  • Drechsler, N., Zheng, Y., Bohner, A., Nobmann, B., von Wirén, N., Kunze, R., & Rausch, C. (2015). Nitrate-dependent control of shoot K homeostasis by NPF7.3/NRT1.5 and SKOR in Arabidopsis. Plant Physiology, 169(4), 2832–2847. https://doi.org/10.1104/pp.15.01152
  • Dreyer, I., Gomez-Porras, J. L., & Riedelsberger, J. (2017). The potassium battery: A mobile energy source for transport processes in plant vascular tissues. The New Phytologist, 216(4), 1049–1053. https://doi.org/10.1111/nph.14667
  • Duan, Y. H., Shi, X. J., Li, S. L., Sun, X. F., & HE, X.-H. (2014). Nitrogen use efficiency as affected by phosphorus and potassium in long-term rice and wheat experiments. Journal of Integrative Agriculture, 13(3), 588–596. https://doi.org/10.1016/s2095-3119(13)60716-9
  • Du, X. Q., Wang, F. L., Li, H., Jing, S., Yu, M., Li, J., Wu, W.-H., Kudla, J., & Wang, Y. (2019). The transcription factor MYB59 regulates K+/NO3− translocation in the Arabidopsis response to low K+ stress. The Plant Cell, 31(3), 699–714. https://doi.org/10.1105/tpc.18.00674
  • Dwivedi, S. K., Kumar, S., Bhakta, N., Singh, S. K., Rao, K. K., Mishra, J. S., & Singh, A. K. (2017). Improvement of submergence tolerance in rice through efficient application of potassium under submergence-prone rainfed ecology of Indo-Gangetic Plain. Functional Plant Biology, 44(9), 907–916. https://doi.org/10.1071/FP17054
  • Economakis, C., & Daskalaki, A. (2003). Effect of potassium nutrition on yield and quality of tomato plants grown with nutrient film technique under sodium chloride saline conditions. In International Symposium on Managing Greenhouse Crops in Saline Environment, 609, 337–339.https://doi.org/10.17660/actahortic.2003.609.50
  • Egan, T. P., & Ungar, I. A. (1998). Effect of different salts of sodium and potassium on the growth of Atriplex prostrata (Chenopodiaceae). Journal of Plant Nutrition, 21(10), 2193–2205. https://doi.org/10.1080/01904169809365554
  • Egilla, J. N., Davies, F. T., & Boutton, T. W. (2005). Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 43(1), 135–140. https://doi.org/10.1007/s11099-005-5140-2
  • Egilla, J. N., Davies Jr, F. T., & Drew, M. C. (2001). Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: Plant growth, leaf macro- and micronutrient content and root longevity. Plant and Soil, 229(2), 213–224. https://doi.org/10.1023/A:1004883032383
  • Fageria, N. K. (2016). The use of nutrients in crop plants. CRC press.
  • Fan, L. M., Wang, Y. F., Wang, H., & Wu, W. H. (2001). In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. Journal of Experimental Botany, 52(361), 1603–1614. https://doi.org/10.1093/jexbot/52.361.1603
  • Farahani, S., Majidi Heravan, E., Shirani Rad, A. H., & Noormohammadi, G. (2019). Effect of potassium sulfate on quantitative and qualitative characteristics of canola cultivars upon late-season drought stress conditions. Journal of Plant Nutrition, 42(13), 1543–1555. https://doi.org/10.1080/01904167.2019.1628987
  • Farooq, M., Basra, S. M. A., Rehman, H., & Saleem, B. A. (2008). Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. Journal of Agronomy and Crop Science, 194(1), 55–60. https://doi.org/10.1111/j.1439-037x.2007.00287.x
  • Farooq, M., Wahid, A., & Lee, D. J. (2009). Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum, 31(5), 937–945. https://doi.org/10.1007/s11738-009-0307-2
  • Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1–6. https://doi.org/10.3126/ijls.v10i1.14509
  • Favreau, B., Denis, M., Ployet, R., Mounet, F., Peireira da Silva, P. H., Franceschini, L., Laclau, J. P., Labate, C., Carrer, H., & Singh, A. K. (2019). Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One, 14(6), e0218528. https://doi.org/10.1371/journal.pone.0218528
  • Fayez, K. A., & Bazaid, S. A. (2014). Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of Saudi Society of Agricultural Sciences, 13(1), 45–55. https://doi.org/10.1016/j.jssas.2013.01.001
  • Feng, X., Liu, W., Qiu, C.W., Zeng, F., Wang, Y., Zhang, G., Chen, Z.H., & Wu, F. (2020). HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnology Journal, 18(8), 1683–1696. https://doi.org/10.1111/pbi.13332
  • Gao, J., Su, Y., Yu, M., Huang, Y., Wang, F., & Shen, A. (2021). Potassium alleviates post-anthesis photosynthetic reductions in winter wheat caused by waterlogging at the stem elongation stage. Frontiers in Plant Science, 11, 607475. https://doi.org/10.3389/fpls.2020.607475
  • Gao, Y. C., Yu, C. Y., Zhang, K., Zhang, H. X., Zhang, S. Y., & Song, Z. Z. (2021). Identification and characterization of the strawberry KT/HAK/KUP transporter gene family in response to K+ deficiency. Acta Physiologiae Plantarum, 43(1), 1–13. https://doi.org/10.1007/s11738-020-03172-3
  • Gierth, M., & Mäser, P. (2007). Potassium transporters in plants–involvement in K+ acquisition, redistribution and homeostasis. FEBS Letters, 581(12), 2348–2356. https://doi.org/10.1016/j.febslet.2007.03.035
  • Gomez-Porras, J. L., Riaño Pachón, D. M., Benito, B., Haro, R., Sklodowski, K., Rodríguez-Navarro, A., & Dreyer, I. (2012). Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Frontiers in Plant Science, 3, 167. https://doi.org/10.3389/fpls.2012.00167
  • Grewal, J. S., & Singh, S. N. (1980). Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant and Soil, 57(1), 105–110. https://doi.org/10.1007/BF02139646
  • Gruber, B. D., Giehl, R. F., Friedel, S., & von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 163(1), 161–179. https://doi.org/10.1104/pp.113.218453
  • Gumz, M. L., Rabinowitz, L., Wingo, C. S., & Ingelfinger, J. R. (2015). An integrated view of potassium homeostasis. The New England Journal of Medicine, 373(1), 60–72. https://doi.org/10.1056/nejmra1313341
  • Guo, Q., Meng, S., Tao, S., Feng, J., Fan, X., Xu, P., Xu, Z., & Shen, X. (2020). Overexpression of a samphire high-affinity potassium transporter gene SbHKT1 enhances salt tolerance in transgenic cotton. Acta Physiologiae Plantarum, 42(3), 36. https://doi.org/10.1007/s11738-020-3027-2
  • Guo, S. W., Shen, Q. R., & Brueck, H. (2007). Effects of local nitrogen supply on water uptake of bean plants in a split root system. Journal of Integrated Plant Biology, 49(4), 472–480. https://doi.org/10.1111/j.1744-7909.2007.00436.x
  • Hakerlerler, H., Oktay, M., Eryüce, N., & Yagmur, B. (1997). Effect of potassium sources on the chilling tolerance of some vegetable seedlings grown in hotbeds. In: Johnston, AE (Eds), Food Security in the WANA Region, the Essential Need for Balanced Fertilization (pp. 317–327). International Potash Institute.
  • Haro, R., Bañuelos, M. A., & Rodríguez-Navarro, A. (2010). High-affinity sodium uptake in land plants. Plant & Cell Physiology, 51(1), 68–79. https://doi.org/10.1093/pcp/pcp168
  • Hasanuzzaman, M., Bhuyan, M. H. M., Nahar, K., Hossain, M. D., Mahmud, J., Hossen, M., Masud, A., & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 31. https://doi.org/10.3390/agronomy8030031
  • Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643
  • Hassan, M. U., Aamer, M., Chattha, M. U., Ullah, M. A., Sulaman, S., Nawaz, M., Zhiqiang, W., Yanqin, M. A., & Guoqin, H. (2017). The role of potassium in plants under drought stress: Mini review. Journal of Basic and Applied Sciences, 13, 268–271. https://doi.org/10.6000/1927-5129.2017.13.44
  • Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring J., Møller I. S., & White P. (2012). Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants (pp. 135–189). Academic Press.
  • Hong, J. P., Takeshi, Y., Kondou, Y., Schachtman, D. P., Matsui, M., & Shin, R. (2013). Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant & Cell Physiology, 54(9), 1478–1490. https://doi.org/10.1093/pcp/pct094
  • Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., Miyao, A., Hirochika, H., An, G., & Schroeder, J. I. (2007). Rice OsHKT2; 1 transporter mediates large Na+ influx component into K+‐starved roots for growth. The EMBO Journal, 26(12), 3003–3014. https://doi.org/10.1038/sj.emboj.7601732
  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393
  • Hussain, S., Maqsood, M., Ijaz, M., Ul-Allah, S., Sattar, A., Sher, A., & Nawaz, A. (2020). Combined application of potassium and zinc improves water relations, stay green, irrigation water use efficiency, and grain quality of maize under drought stress. Journal of Plant Nutrition, 43(14), 2214–2225. https://doi.org/10.1080/01904167.2020.1765181
  • Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80. https://doi.org/10.3389/fpls.2019.00080
  • Islam, A., & Muttaleb, A. (2016). Effect of potassium fertilization on yield and potassium nutrition of Boro rice in a wetland ecosystem of Bangladesh. Archives of Agronomy and Soil Science, 62(11), 1530–1540. https://doi.org/10.1080/03650340.2016.1157259
  • Jákli, B., Tavakol, E., Tränkner, M., Senbayram, M., & Dittert, K. (2017). Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. Journal of Plant Physiology, 209, 20–30. https://doi.org/10.1016/j.jplph.2016.11.010
  • Jan, M., Haq, M. A., Haq, T., Ali, A., Hussain, S., & Ibrahim, M. (2020). Protective effect of potassium application on NaCl induced stress in tomato (Lycopersicon esculentum L.) genotypes. Journal of Plant Nutrition, 43(13), 1988–1998. https://doi.org/10.1080/01904167.2020.1766071
  • Jatav, K. S., Agarwal, R. M., Singh, R. P., & Shrivastava, M. (2012). Growth and Yield Responses of Wheat [Triticum aestivum L] to Suboptimal Water Supply and Different Potassium Doses. Journal of Functional and Environmental Botany, 2(1), 39–51. https://doi.org/10.5958/j.2231-1742.2.1.005
  • Jia, H., Hao, L., Guo, X., Liu, S., Yan, Y., & Guo, X. (2016). A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Science, 252, 267–281. https://doi.org/10.1016/j.plantsci.2016.07.014
  • Jiang, W., Jin, R., Wang, D., Yang, Y., Zhao, P., Liu, M., Zhang, A., & Tang, Z. (2022). A novel high-affinity potassium transporter IbHKT-like gene enhances Low–Potassium tolerance in transgenic roots of sweet potato (Ipomoea batatas (L.) Lam.). Plants, 11(11), 1389. https://doi.org/10.3390/plants11111389
  • Jiang, M., & Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant & Cell Physiology, 42(11), 1265–1273. https://doi.org/10.1093/pcp/pce162
  • Johnson, R., Vishwakarma, K., Hossen, M. S., Kumar, V., Shackira, A. M., Puthur, J. T., Abdi, G., Sarraf, M., & Hasanuzzaman, M. (2022). Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 172, 156–169. https://doi.org/10.1016/j.plaphy.2022.01.001
  • Kafkafi, U. (1990). Impact of potassium in relieving plants from climatic and soil-induced stresses. In: Johnston, AE (Eds), Food Security in the WANA Region, the Essential Need for Balanced Fertilization (pp. 317–327). International Potash Institute.
  • Kaldenhoff, R., Ribas-Carbo, M. I. Q. U. E. L., Sans, J. F., Lovisolo, C., HECKWOLF, M., & UEHLEIN, N. (2008). Aquaporins and plant water balance. Plant, Cell & Environment, 31(5), 658–666. https://doi.org/10.1111/j.1365-3040.2008.01792.x
  • Kant, S., & Kafkafi, U. (2002). Potassium and abiotic stresses in plants. In N. S. Pasricha & S. K. Bansal (Eds.), Potassium for sustainable crop production (pp. 233–251). Potash Institute of India.
  • Kaur, H., Bedi, S., Sethi, V. P., & Dhatt, A. S. (2018). Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. Journal of Plant Nutrition, 41(12), 1547–1554. https://doi.org/10.1080/01904167.2018.1459689
  • Kaya, C., Kirnak, H., & Higgs, D. (2001). Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. Journal of Plant Nutrition, 24(2), 357–367. https://doi.org/10.1081/pln-100001394
  • Khan, M. I. R., Asgher, M., & Khan, N. A. (2013). Rising temperature in the changing environment: A serious threat to plants. Climate Change and Environmental Sustainability, 1(1), 25–36. https://doi.org/10.5958/j.2320-6411.1.1.004
  • Kim, T. H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61(1), 561–591. https://doi.org/10.1146/annurev-arplant-042809-112226
  • Kim, E. J., Kwak, J. M., Uozumi, N., & Schroeder, J. I. (1998). AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. The Plant Cell, 10(1), 51–62. https://doi.org/10.1105/tpc.10.1.51
  • Kim, H. J., Lim, H. H., Rho, S. H., Eom, S. H., & Park, C.-S. (2006). Hydrophobic interface between two regulators of K+ conductance domains critical for calcium-dependent activation of large conductance Ca2+-activated K+ channels. The Journal of Biological Chemistry, 281(50), 38573–38581. https://doi.org/10.1074/jbc.m604769200
  • Köhler, C., Merkle, T., & Neuhaus, G. (1999). Characterisation of a novel gene family of putative cyclic nucleotide‐and calmodulin‐regulated ion channels in Arabidopsis thaliana. The Plant Journal, 18(1), 97–104. https://doi.org/10.1046/j.1365-313x.1999.00422.x
  • Kraegeloh, A., Amendt, B., & Kunte, H. J. (2005). Potassium transport in a halophilic member of the bacteria domain: Identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T. Journal of Bacteriology, 187(3), 1036–1043. https://doi.org/10.1128/jb.187.3.1036-1043.2005
  • Lebaudy, A., Véry, A. A., & Sentenac, H. (2007). K+ channel activity in plants: Genes, regulations and functions. FEBS Letters, 581(12), 2357–2366. https://doi.org/10.1016/j.febslet.2007.03.058
  • Leigh, R. A., & Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. The New Phytologist, 97(1), 1–13. https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
  • Lester, G. E., Jifon, J. L., & Makus, D. J. (2010). Impact of potassium nutrition on food quality of fruits and vegetables: A condensed and concise review of the literature. Better Crops, 94(1), 18–21.
  • Li, G. Z., Liu, J., Chen, S. J., Wang, P. F., Liu, H.-T., Dong, J., Zheng, Y.-X., Xie, Y.-X., Wang, C.-Y., Guo, T.-C., & Kang, G.-Z. (2021). Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. Journal of Pineal Research, 70(4), e12727. https://doi.org/10.1111/jpi.12727
  • Liu, C., & Liao, W. (2022). Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. Plant Physiology and Biochemistry, 173, 110–121. https://doi.org/10.1016/j.plaphy.2022.01.016
  • Liu, H. Y., Sun, W. N., Su, W. A., & Tang, Z. C. (2006). Co‐regulation of water channels and potassium channels in rice. Physiologia Plantarum, 128(1), 58–69. https://doi.org/10.1111/j.1399-3054.2006.00709.x
  • Lotter, D. (2015). Facing food insecurity in Africa: Why, after 30 years of work in organic agriculture, I am promoting the use of synthetic fertilizers and herbicides in small-scale staple crop production. Agriculture and Human Values, 32(1), 111–118. https://doi.org/10.1007/s10460-014-9547-x
  • Lv, X., Li, T., Wen, X., Liao, Y., & Liu, Y. (2017). Effect of potassium foliage application post-anthesis on grain filling of wheat under drought stress. Field Crops Research, 206, 95–105. https://doi.org/10.1016/j.fcr.2017.02.015
  • Mahmood, I., Razzaq, A., Qayyum, A., & Ali Khan, A. (2017). Mitigating the terminal drought stress in chickpea (Cicer Arientinum L.) through exogenous application of nutrients. Journal of Agricultural Research, 55(2). https://www.researchgate.net/publication/320548667
  • Marschner, H. (Ed.). (2012). Marschner’s mineral nutrition of higher plants. Academic press.
  • Marschner, H., & Cakmak, I. (1989). High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. Journal of Plant Physiology, 134(3), 308–315. https://doi.org/10.1016/s0176-1617(89)80248-2
  • Marschner, H., Kirkby, E. A., & Cakmak, I. (1996). Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 47(Special Issue), 1255–1263. https://doi.org/10.1093/jxb/47.special_issue.1255
  • Marten, I., Hoth, S., Deeken, R., Ache, P., Ketchum, K. A., Hoshi, T., & Hedrich, R. (1999). AKT3, a phloem-localized K+ channel, is blocked by protons. Proceedings of the National Academy of Sciences, 96(13), 7581–7586. https://doi.org/10.1073/pnas.96.13.7581
  • Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N., Amtmann, A., Maathuis, F. J. M., Sanders, D., Harper, J. F., Tchieu, J., Gribskov, M., Persans, M. W., Salt, D. E., Kim, S. A., & Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667. https://doi.org/10.1104/pp.126.4.1646
  • Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological Reviews, 95(4), 1321–1358. https://doi.org/10.1152/physrev.00008.2015
  • Mehrandish, M., Moeini, M. J., & Armin, M. (2012). Sugar beet (Beta vulgaris L.) response to potassium application under full and deficit irrigation. European Journal of Experimental Biology, 2(6), 2113–2119.
  • Merwad, A. R. M. A. (2016). Efficiency of potassium fertilization and salicylic acid on yield and nutrient accumulation of sugar beet grown on saline soil. Communication in Soil Science and Plant Analysis, 47(9), 1184–1192. https://doi.org/10.1080/00103624.2016.1166242
  • Mesbah, E. A. E. (2009). Effect of irrigation regimes and foliar spraying of potassium on yield, yield components and water use efficiency of wheat (Triticum aestivum L.) in sandy soils. World Journal of Agricultural Sciences, 5(6), 662–669.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Nguyen, T. H., Huang, S., Meynard, D., Chaine, C., Michel, R., Roelfsema, M. R. G., Guiderdoni, E., Sentenac, H., & Véry, A. A. (2017). A dual role for the OsK5.2 ion channel in stomatal movements and K+ loading into xylem sap. Plant Physiology, 174(4), 2409–2418. https://doi.org/10.1104/pp.17.00691
  • Oddo, E., Abbate, L., Inzerillo, S., Carimi, F., Motisi, A., Sajeva, M., & Nardini, A. (2020). Water relations of two Sicilian grapevine cultivars in response to potassium availability and drought stress. Plant Physiology and Biochemistry, 148, 282–290. https://doi.org/10.1016/j.plaphy.2020.01.025
  • Oddo, E., Inzerillo, S., La Bella, F., Grisafi, F., Salleo, S., Nardini, A., & Goldstein, G. (2011). Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiology, 31(2), 131–138. https://doi.org/10.1093/treephys/tpq115
  • O’Neill, S. D., & Spanswick, R. M. (1984). Characterization of native and reconstituted plasma membrane H+-ATPase from the plasma membrane of Beta vulgaris. The Journal of Membrane Biology, 79(3), 245–256. https://doi.org/10.1007/BF01871063
  • Oshunsanya, S. O., Nwosu, N. J., & Li, Y. (2019). Abiotic stress in agricultural crops under climatic conditions. In: Jhariya, Manoj Kumar, Banerjee, Arnab, Meena, Ram Swaroop, Yadav, Dhiraj Kumar (Eds), Sustainable Agriculture, Forest and Environmental Management (pp. 71–100). Springer.
  • Pandey, G. K., & Mahiwal, S. (2020). Role of potassium in plants. Springer.
  • Park, S. C., Yu, Y. C., Kou, M., Yan, H., Tang, W., Wang, X., Liu, Y. J., Zhang, Y. G., KWAK, S.-S., Ma, D. F., SUN, J., & LI, Q. (2017). Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae. Journal of Integrative Agriculture, 16(10), 2168–2176. https://doi.org/10.1016/S2095-3119(16)61570-8
  • Pervez, H., Makhdum, M. I., & Ashraf, M. (2006). Influence of potassium nutrition on leaf area index in cotton (Gossypium hirsutum L.) under an arid environment. Pakistan Journal of Botany, 38(4), 1085–1092.
  • Platten, J. D., Cotsaftis, O., Berthomieu, P., Bohnert, H., Davenport, R. J., Fairbairn, D. J., Horie, T., Leigh, R. A., Lin, H.-X., Luan, S., Mäser, P., Pantoja, O., Rodríguez-Navarro, A., Schachtman, D. P., Schroeder, J. I., Sentenac, H., Uozumi, N., Véry, A.-A., Zhu, J.-K. … Tester, M. (2006). Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 11(8), 372–374. https://doi.org/10.1016/j.tplants.2006.06.001
  • Premachandra, G. S., Saneoka, H., & Ogata, S. (1991). Cell Membrane Stability and Leaf Water Relations as Affected by Potassium Nutrition of Water-Stressed Maize. Journal of Experimental Botany, 42(6), 739–745. https://doi.org/10.1093/jxb/42.6.739
  • Qayyum, A., Razzaq, A., Ahmad, M., & Jenks, M. A. (2011). Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. African Journal of Biotechnology, 10(64), 14038–14045. https://doi.org/10.5897/ajb11.2220
  • Qi, Z., Verma, R., Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C. A., & Berkowitz, G. A. (2010). Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepr1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proceedings of the National Academy of Sciences, USA, 107(49), 21193–21198. https://doi.org/10.1073/pnas.1000191107
  • Qu, B., He, X., Wang, J., Zhao, Y., Teng, W., Shao, A., Zhao, X., Ma, W., Wang, J., Li, B., Li, Z., & Tong, Y. (2015). A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiology, 167(2), 411–423. https://doi.org/10.1104/pp.114.246959
  • Rac, M., Shumbe, L., Oger, C., Guy, A., Vigor, C., Ksas, B., Durand, T., & Havaux, M. (2021). Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. Physiologia Plantarum, 171(2), 246–259. https://doi.org/10.1111/ppl.13279
  • Ragel, P., Raddatz, N., Leidi, E. O., Quintero, F. J., & Pardo, J. M. (2019). Regulation of K+ nutrition in plants. Frontiers in Plant Science, 10, 281. https://doi.org/10.3389/fpls.2019.00281
  • Rajappa, S., Krishnamurthy, P., & Kumar, P. P. (2020). Regulation of AtKUP2 expression by bHLH and WRKY transcription factors helps to confer increased salt tolerance to Arabidopsis thaliana plants. Frontiers in Plant Science, 11, 1311. https://doi.org/10.3389/fpls.2020.01311
  • Raza, M. A. S., Saleem, M. F., Khan, I. H., Hussain, M. B., & Shah, G. M. (2018). Amelioration in growth and physiological efficiency of sunflower (Helianthus annuus L.) under drought by potassium application. Communications in Soil Science and Plant Analysis, 49(18), 2291–2300. https://doi.org/10.1080/00103624.2018.1499764
  • Raza, M. A. S., Saleem, M. F., Shah, G. M., Khan, I. H., & Raza, A. (2014). Exogenous application of glycine betaine and potassium for improving water relations and grain yield of wheat under drought. Journal of Soil Science and Plant Nutrition, 14(2), 348–364. https://doi.org/10.4067/s0718-95162014005000028
  • Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M. J., & De Kok, L. J. (2017). Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil, 411(1), 319–332. https://doi.org/10.1007/s11104-016-3026-7
  • Riedelsberger, J., Miller, J. K., Valdebenito-Maturana, B., Piñeros, M. A., González, W., & Dreyer, I. (2021). Plant HKT channels: An updated view on structure, function and gene regulation. International Journal of Molecular Sciences, 22(4), 1892. https://doi.org/10.3390/ijms22041892
  • Riedelsberger, J., Vergara-Jaque, A., Piñeros, M., Dreyer, I., & González, W. (2019). An extracellular cation coordination site influences ion conduction of Os HKT2; 2. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1909-5
  • Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K. A., Grabov, A., Dolan, L., & Hatzopoulos, P. (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. The Plant Cell, 13(1), 139–151. https://doi.org/10.1105/tpc.13.1.139
  • Rodriguez-Rosales, M. P., Jiang, X., Galvez, F. J., Ara, M. N., Cubero, B., & Venema, K. (2008). Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. The New Phytologist, 179(2), 366–377. https://doi.org/10.1111/j.1469-8137.2008.02461.x
  • Römheld, V., & Kirkby, E. A. (2010). Research on potassium in agriculture: Needs and prospects. Plant and Soil, 335(1–2), 155–180. https://doi.org/10.1007/s11104-010-0520-1
  • Safdar, L. B., Andleeb, T., Latif, S., Umer, M. J., Tang, M., Li, X., Liu, S., & Quraishi, U. M. (2020). Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Frontiers in Plant Science, 11, 70. https://doi.org/10.3389/fpls.2020.00070
  • Saida, C., Houria, B., & Mebarek, B. (2014). Interactive effects of salinity and potassium on physio-morphological traits of tomato (Lycopersicon esculentum L.). Agriculture and Biology Journal of North America, 5, 135–143. https://doi.org/10.5251/abjna.2014.5.3.135.143
  • Sangakkara, U. R., Frehner, M., & Nösberger, J. (2000). Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mung bean and cowpea. Journal of Agronomy and Crop Science, 185(3), 201–207. https://doi.org/10.1046/j.1439-037x.2000.00422.x
  • Santa-María, G. E., Rubio, F., Dubcovsky, J., & Rodríguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant Cell, 9(12), 2281–2289. https://doi.org/10.1105/tpc.9.12.2281
  • Santos, E. F., Mateus, N. S., Rosario, M. O., Garcez, T. B., Mazzafera, P., & Lavres, J. (2021). Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. Physiologia Plantarum, 172(2), 552–563. https://doi.org/10.1111/ppl.13228
  • Sanyal, S. K., Rajasheker, G., Kavi Kishor, P. B., Anil Kumar, S., Hima Kumari, P., Saritha, K. V., Rathnagiri, P., & Pandey, G. K. (2020). Role of protein phosphatases in signaling, potassium transport and abiotic stress responses. In K. Giridhar (Ed.), Protein phosphatases in stress management in plants: Functional genomics perspective (pp. 203–232). Pandey. Published by Springer Verlag. ISBN 9783030487324, ISBN 9783030487331 (eBook). . ISBN 9783030487324, ISBN 9783030487331 (eBook). https://doi.org/10.1007/978-3-030-48733-1.
  • Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
  • Schramke, H., Laermann, V., Tegetmeyer, H. E., Brachmann, A., Jung, K., & Altendorf, K. (2017). Revisiting regulation of potassium homeostasis in Escherichia coli: The connection to phosphate limitation. Microbiology Open, 6(3), e00438. https://doi.org/10.1002/mbo3.438
  • Schroeder, D. (1978). Structure and weathering of potassium containing minerals. IPI Research Topics, 37, 5–25.
  • Schuurink, R. C., Shartzer, S. F., Fath, A., & Jones, R. L. (1998). Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proceedings of the National Academy of Sciences, 95(4), 1944–1949. https://doi.org/10.1073/pnas.95.4.1944
  • Shabala, S. (2003). Regulation of potassium transport in leaves: From molecular to tissue level. Annals of Botany, 92(5), 627–634. https://doi.org/10.1093/aob/mcg191
  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257–279. https://doi.org/10.1111/ppl.12165
  • Shabala, S., Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., Conn, S., Eing, C., & Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 61(5), 839–853. https://doi.org/10.1111/j.1365-313x.2009.04110.x
  • Shah, W. H., Rasool, A., Saleem, S., Mushtaq, N. U., Tahir, I., Hakeem, K. R., Rehman, R. U., & Hasanuzzaman, M. (2021). Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress. International Journal of Genomics, 2021, 5578727. https://doi.org/10.1155/2021/5578727
  • Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46(3), 209–221. https://doi.org/10.1007/s10725-005-0002-2
  • Sharma, A., & Zheng, B. (2019). Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants, 8(7), 190. https://doi.org/10.3390/plants8070190
  • Shehzad, M. A., Nawaz, F., Ahmad, F., Ahmad, N., & Masood, S. (2020). Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicology and Environmental Safety, 187, 109841. https://doi.org/10.1016/j.ecoenv.2019.109841
  • Sheng, X. F., He, L. Y., & Huang, W. Y. (2002). The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agricultural Sciences in China, 1(6), 662–666.
  • Sheng, P., Tan, J., Jin, M., Wu, F., Zhou, K., Ma, W., Heng, Y., Wang, J., Guo, X., Zhang, X., Cheng, Z., Liu, L., Wang, C., Liu, X., & Wan, J. (2014). Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 33(9), 1581–1594. https://doi.org/10.1007/s00299-014-1639-y
  • Shen, X., Yuan, Y., Zhang, H., Guo, Y., Zhao, Y., Li S., & Kong F. (2019). The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes, 10(8), 607. https://doi.org/10.3390/genes10080607
  • Shin, R., & Schachtman, D. P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences USA, 101(23), 8827–8832. Doi: 10.1073/pnas.0401707101
  • Shirazi, M. U., Ashraf, M. Y., Khan, M. A., & Naqvi, M. H. (2005). Potassium induced salinity tolerance in wheat (Triticum aestivum L.). International Journal of Environmental Science & Technology, 2(3), 233–236. https://doi.org/10.1007/BF03325881
  • Shi, X. L., Zhou, D. Y., GUO, P., Zhang, G. H., Dong, J. L., Ren, J. Y., Jiang, C. J., Zhong, C., Zhao, X. H., & Yu, H. Q. (2020). External potassium mediates the response and tolerance to salt stress in peanut at the flowering and needling stages. Photosynthetica, 58(5), 1141–1149. https://doi.org/10.32615/ps.2020.070
  • Shkolnik‐inbar, D., Adler, G., & Bar‐zvi, D. (2013). ABI4 downregulates expression of the sodium transporter HKT1; 1 in Arabidopsis roots and affects salt tolerance. The Plant Journal, 73(6), 993–1005. https://doi.org/10.1111/tpj.12091
  • Siddiqui, M. H., Al-Whaibi, M. H., Sakran, A. M., Basalah, M. O., & Ali, H. M. (2012). Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. International Journal of Molecular Science, 13(6), 6604–6619. https://doi.org/10.3390/ijms13066604
  • Soleimanzadeh, H., Habibi, D., Ardakani, M. R., Paknejad, F., & Rejali, F. (2010). Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in sunflower (Helianthus annuus L.). American Journal of Agriculture and Biological Sciences, 5(1), 56–61. https://doi.org/10.3844/ajabssp.2010.56.61
  • Song, Z. Z., Duan, C. L., Guo, S. L., Yang, Y., Feng, Y. F., Ma, R. J., & Yu, M. L. (2015). Potassium contributes to zinc stress tolerance in peach (Prunus persica) seedlings by enhancing photosynthesis and the antioxidant defense system. Genetics and Molecular Research, 14(3), 8338–8351. https://doi.org/10.4238/2015.July.27.22
  • Song, Z. Z., Ma, R. J., Guo, S. L., Yu, M. L., & Xu, J. L. (2016). Expression and function analysis of potassium transporter gene PpeKUP5 in peach. Acta Horticulturae Sinica, 43, 218–226. https://doi.org/10.1007/s10535-014-0462-1
  • Song, Z. Z., Yang, S. Y., Zuo, J., & Su, Y. H. (2014). Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Biologia Plantarum, 58(4), 649–658. https://doi.org/10.1007/s10535-014-0454-1
  • Srivastava, A. K., Das, S. N., Malhotra, S. K., & Majumdar, K. (2014). SSNM-based rationale of fertilizer use in perennial crops: A review. Indian Journal of Agricultural Sciences, 84(1), 3–17.
  • Srivastava, A. K., Shankar, A., Nalini Chandran, A. K., Sharma, M., Jung, K.-H., Suprasanna, P., & Pandey, G. K. (2020). Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany, 71(2), 608–619. https://doi.org/10.1093/jxb/erz458
  • Subba Rao, A., Srinivasarao, C., & Srivastava, S. (1996). Potassium status and crop response to potassium on the soils of Agro-ecological regions of India. IPI Research Topics, 20, 1–57.
  • Sustr, M., Soukup, A., & Tylova, E. (2019). Potassium in root growth and development. Plants, 8(10), 435. https://doi.org/10.3390/plants8100435
  • Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126(1), 45–51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
  • Teakle, N. L., Bazihizina, N., Shabala, S., Colmer, T. D., Barrett Lennard, E. G., Rodrigo-Moreno, A., & Läuchli, A. E. (2013). Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: The importance of K+ retention in roots. Environmental and Experimental Botany, 87, 69–78. https://doi.org/10.1016/j.envexpbot.2012.09.006
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503–527. https://doi.org/10.1093/aob/mcg058
  • Tian, X. F., Li, C. L., Zhang, M., Lu, Y. Y., Guo, Y.-L., & Liu, L.-F. (2017). Effects of controlled‐release potassium fertilizer on available potassium, photosynthetic performance, and yield of cotton. Journal of Plant Nutrition and Soil Science, 180(5), 505–515. https://doi.org/10.1002/jpln.201700005
  • Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
  • Tsujii, M., Kera, K., Hamamoto, S., Kuromori, T., Shikanai, T., & Uozumi, N. (2019). Evidence for potassium transport activity of Arabidopsis KEA1-KEA6. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-46463-7
  • Tyczewska, A., Woźniak, E., Gracz, J., Kuczyński, J., & Twardowski, T. (2018). Towards food security: Current state and future prospects of agrobiotechnology. Trends in Biotechnology, 36(12), 1219–1229. https://doi.org/10.1016/j.tibtech.2018.07.008
  • Ul-Allah, S., Ijaz, M., Nawaz, A., & Sattar, A., Sher A., Naeem M., . & Mahmood K. (2020). Potassium application improves grain yield and alleviates drought susceptibility in diverse maize hybrids. Plants, 9(1), 75. https://doi.org/10.3390/plants9010075
  • Umar, S., Diva, I., Anjum, N. A., Iqbal, M., Ahmad, I., & Pereira, E. (2011). Potassium-induced alleviation of salinity stress in Brassica campestris L. Open Life Sciences, 6(6), 1054–1063. https://doi.org/10.2478/s11535-011-0065-1
  • Wang, M., Ding, L., Gao, L., Li, Y., Shen, Q., & Guo, S. (2016). The interactions of aquaporins and mineral nutrients in higher plants. International Journal of Molecular Science, 17(8), 1229. https://doi.org/10.3390/ijms17081229
  • Wang, Q., Dodd, I. C., Belimov, A. A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 43(2), 161–172. https://doi.org/10.1071/FP15200
  • Wang, C. F., Han, G. L., Yang, Z. R., Li, Y. X., & Wang, B. S. (2022). Plant salinity sensors: Current understanding and future directions. Frontiers in Plant Science, 13, 859224. https://doi.org/10.3389/fpls.2022.859224
  • Wang, B., Liu, C., Zhang, D., He, C., Zhang, J., & Li, Z. (2019). Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 19(1), 1–19. https://doi.org/10.1186/s12870-019-1941-5
  • Wang, H. Y., Shen, Q. H., Zhou, J. M., Wang, J., Du, C.-W., & Chen, X.-Q. (2011). Plants use alternative strategies to utilize nonexchangeable potassium in minerals. Plant and Soil, 343(1), 209–220. https://doi.org/10.1007/s11104-011-0726-x
  • Wang, Y., & Wu, W. H. (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64(1), 451–476. https://doi.org/10.1146/annurev-arplant-050312-120153
  • Wang, Y., & Wu, W. H. (2015). Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Current Opinion in Plant Biology, 25, 46–52. https://doi.org/10.1016/j.pbi.2015.04.007
  • Wang, Y., & Wu, W. H. (2017). Regulation of potassium transport and signaling in plants. Current Opinion in Plant Biology, 39, 123–128. https://doi.org/10.1016/j.pbi.2017.06.006
  • Wang, C., Yamamoto, H., Narumiya, F., Munekage, Y. N., Finazzi, G., Szabo, I., & Shikanai, T. (2017). Fine‐tuned regulation of the K+/H+antiporter KEA 3 is required to optimize photosynthesis during induction. The Plant Journal, 89(3), 540–553. https://doi.org/10.1111/tpj.13405
  • Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370–7390. https://doi.org/10.3390/ijms14047370
  • Wang, W., Zou, J., White, P. J., Ding, G., Li, Y., Xu, F., & Shi, L. (2021). Identification of QTLs associated with potassium use efficiency and underlying candidate genes by whole-genome resequencing of two parental lines in Brassica napus. Genomics, 113(2), 755–768. https://doi.org/10.1016/j.ygeno.2021.01.020
  • Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasanna, P., & Kavi Kishor, P. B. (2020). Engineering salinity tolerance in plants: Progress and prospects. Planta, 251(4). https://doi.org/10.1007/s00425-020-03366-6
  • Webster, D. E., & Ebdon, J. S. (2005). Effects of nitrogen and potassium fertilization on perennial ryegrass cold tolerance during deacclimation in late winter and early spring. Horticultural Science, 40(3), 842–849. https://doi.org/10.21273/HORTSCI.40.3.842
  • Wei, J., Li, C., Li, Y., Jiang, G., Cheng, G., Zheng, Y., & Pandey, G. (2013). Effects of external potassium (K) supply on drought tolerances of two contrasting winter wheat cultivars. PLoS One, 8(7), e69737. https://doi.org/10.1371/journal.pone.0069737
  • Wolf, O., & Jeschke, D. W. (1987). Modeling of sodium and potassium flows via phloem and xylem in the shoot of salt-stressed barley. Journal of Plant Physiology, 128(4–5), 371–386. https://doi.org/10.1016/S0176-1617(87)80122-0
  • Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., & Toriyama, K. (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 28(1), 21–30. https://doi.org/10.1007/s00299-008-0614-x
  • Wu, H., Zhang, X., Giraldo, J. P., & Shabala, S. (2018). It is not all about sodium: Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431(1–2), 1–17. https://doi.org/10.1007/s11104-018-3770-y
  • Xu, J., Li, H. D., Chen, L. Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125(7), 1347–1360. https://doi.org/10.1016/j.cell.2006.06.011
  • Yang, A., Dai, X., & Zhang, W. H. (2012). A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7), 2541–2556. https://doi.org/10.1093/jxb/err431
  • Yang, O., Popova, O. V., Süthoff, U., Lüking, I., Dietz, K.-J., & Golldack, D. (2009). The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 436(1–2), 45–55. https://doi.org/10.1016/j.gene.2009.02.010
  • Yang, T., Zhang, S., Hu, Y., Wu, F., Hu, Q., Chen, G., Cai, J., Wu, T., Moran, N., Yu, L., & Xu, G. (2014, Oct). The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 166(2), 945–59. https://doi.org/10.1104/pp.114.246520
  • Yawson, D. O., Adu, M. O., Ason, B., Armah, F. A., Boateng, E., & Quansah, R. (2018). Ghanaians might be at risk of excess dietary intake of potassium based on food supply data. Journal of Nutrition and Metabolism, 2018, 5989307. https://doi.org/10.1155/2018/5989307
  • Yue, X., Zhao, X. Y., Fei, Y., & Zhang, X. (2012). Correlation of aquaporins and transmembrane solute transporters revealed by genome-wide analysis developing maize leaf. Comparative and Functional Genomics, 2012, 546930. https://doi.org/10.1155/2012/546930
  • Zaheer, M. M., Yasin, N. A., Ahmad, S. R., Khan, W. U., Ahmad, A., Ali, A., & Rehman, S. U. (2017). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. Journal of Plant Nutrition, 41(4), 461–476. https://doi.org/10.1080/01904167.2017.1385808
  • Zahoor, R., Dong, H., Abid, M., Zhao, W., Wang, Y., & Zhou, Z. (2017). Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environmental and Experimental Botany, 137, 73–83. https://doi.org/10.1016/j.envexpbot.2017.02.002
  • Zain, N. A. M., Ismail, M. R., Puteh, A., Mahmood, M., & Islam, M. R. (2014). Drought tolerance and ion accumulation of rice following application of additional potassium fertilizer. Communications in Soil Science and Plant Analysis, 45(19), 2502–2514. https://doi.org/10.1080/00103624.2014.932374
  • Zamani, S., Naderi, M. R., Soleymani, A., & Nasiri, B. M. (2020). Sunflower (Helianthus annuus L.) biochemical properties and seed components affected by potassium fertilization under drought conditions. Ecotoxicology and Environmental Safety, 190, 110017. https://doi.org/10.1016/j.ecoenv.2019.110017
  • Zhang, L., Gao, M., Li, S., Alva, A. K., & Ashraf, M. (2014). Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars. Turkish Journal of Botany, 38(4), 713–723. https://doi.org/10.3906/bot-1308-47
  • Zhang, M., Liang, X., Wang, L., Cao, Y., Song, W., Shi, J., Lai, J., & Jiang, C. (2019). A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 5(12), 1297–1308. https://doi.org/10.1038/s41477-019-0565-y
  • Zhang, Y., Shi, X., Lin, S., Wang, J., Tang, M., Huang, J., Gao, T., Zhang, H., & Song, Z. (2022). Heterologous expression of the MiHAK14 homologue from Mangifera indica enhances plant tolerance to K+ deficiency and salinity stress in Arabidopsis. Plant Growth Regulation, 98(1), 39–49. https://doi.org/10.1007/s10725-022-00831-y
  • Zhao, J., Li, P., Motes, C. M., Park, S., & Hirschi, K. D. (2015). CHX14 is a plasma membrane K-efflux transporter that regulates K+ redistribution in Arabidopsis thaliana. Plant, Cell & Environment, 38(11), 2223–2238. https://doi.org/10.1111/pce.12524
  • Zhao, Y., Li, X. Y., Zhang, S. H., Wang, J., Yang, X.-F., Tian, J.-C., Hai, Y., & Yang, X.-J. (2014). Mapping QTLs for potassium-deficiency tolerance at the seedling stage in wheat (Triticum aestivum L.). Euphytica, 198(2), 185–198. https://doi.org/10.1007/s10681-014-1091-7
  • Zhao, D., Oosterhuis, D. M., & Bednarz, C. W. (2001). Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 39(1), 103–109. https://doi.org/10.1023/a:1012404204910
  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017
  • Zhu, X., Pan, T., Zhang, X., Fan, L., Quintero, F. J., Zhao, H., Su, X., Li, X., Villalta, I., Mendoza, I., Shen, J., Jiang, L., Pardo, J. M., & Qiu, Q.-S. (2018). K+ efflux antiporters 4, 5, and 6 mediate pH and K+ homeostasis in endomembrane compartments. Plant Physiology, 178(4), 1657–1678. https://doi.org/10.1104/pp.18.01053
  • Zhu, B., Xu, Q., Zou, Y., Ma, S., Zhang, X., Xie, X., & Wang, L. (2020). Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regulation, 90(3), 455–466. https://doi.org/10.1007/s10725-019-00545-8
  • Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum, 50(3), 389–394. https://doi.org/10.1007/s10535-006-0054-9
  • Zorb, C., Senbayram, M., & Peiter, E. (2014). Potassium in agriculture–status and perspectives. Journal of Plant Physiology, 171(9), 656–669. https://doi.org/10.1016/j.jplph.2013.08.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.