196
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Non-rhizobia are the alternative sustainable solution for growth and development of the nonlegume plants

& ORCID Icon
Received 20 Aug 2022, Accepted 13 Nov 2022, Published online: 05 Dec 2022

References

  • Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, 628379. https://doi.org/10.3389/fmicb.2021.628379
  • Adriano-Anaya, M., Salvador-Figueroa, M., Ocampo, J. A., & García-Romera, I. (2005). Plant cell-wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbiosis, 40(3), 151. http://hdl.handle.net/10222/78173
  • Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological research, 221, 36–49. https://doi.org/10.1016/j.micres.2019.02.001
  • Ali, M. A., Lou, Y., Hafeez, R., Li, X., Hossain, A., Xie, T., Lin, L., Li, B., Yin, Y., Yan, J., & An, Q. (2021). Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa complex. Frontiers in Microbiology, 11, 618601. https://doi.org/10.3389/fmicb.2020.618601
  • Al-Mallah, M. K., Davey, M. R., & Cocking, E. C. (1989). Formation of nodular structures on rice seedlings by rhizobia. Journal of Experimental Botany, 40(4), 473–478. https://doi.org/10.1093/jxb/40.4.473
  • Amna, U. D. B., Sarfraz, S., Xia, Y., Kamran, M. A., Javed, M. T., Sultan, T., Hussain Munis, M. F., & Chaudhary, H. J. (2019). Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress. Ecotoxicology and Environmental Safety, 183, 109466. https://doi.org/10.1016/j.ecoenv.2019.109466
  • Ardley, J., & Sprent, J. (2021). Evolution and biogeography of actinorhizal plants and legumes: A comparison. The Journal of Ecology, 109(3), 1098–1121. https://doi.org/10.1111/1365-2745.13600
  • Baldani, J. I., Baldani, V. L. D., Seldin, L., & Döbereiner, J. (1986). Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic and Evolutionary Microbiology, 36(1), 86–93. https://doi.org/10.1099/00207713-36-1-86
  • Basbuga, S., Basbuga, S., Yayla, F., Mahmoud, A. M., & Can, C. (2021). Diversity of rhizobial and non-rhizobial bacteria nodulating wild ancestors of grain legume crop plants. International Microbiology, 24(2), 207–218. https://doi.org/10.1007/s10123-020-00158-6
  • Blossfeld, S., Gansert, D., Thiele, B., Kuhn, A. J., & Lösch, R. (2011). The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biology & Biochemistry, 43(6), 1186–1197. https://doi.org/10.1016/j.soilbio.2011.02.007
  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64(1), 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
  • Carvalho, T. L., Balsemão-Pires, E., Saraiva, R. M., Ferreira, P. C., & Hemerly, A. S. (2014). Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany, 65(19), 5631–5642. https://doi.org/10.1093/jxb/eru319
  • Castillo, U. F., Strobel, G. A., Ford, E. J., Hess, W. M., Porter, H., Jensen, J. B., Albert, H., Robison, R., Condron, M., Teplow, D. B., Stevens, D., & Yaver, D. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology (Reading, England), 148(9), 2675–2685. https://doi.org/10.1099/00221287-148-9-2675
  • Chaintreuil, C., Giraud, E., Prin, Y., Lorquin, J., Bâ, A., Gillis, M., de Lajudie, P., & Dreyfus, B. (2000). Photosynthetic Bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Applied and Environmental Microbiology, 66(12), 5437–5447. https://doi.org/10.1128/AEM.66.12.5437-5447.2000
  • Chang, W. S., van de Mortel, M., Nielsen, L., Nino de Guzman, G., Li, X., & Halverson, L. J. (2007). Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology, 189(22), 8290–8299. https://doi.org/10.1128/JB.00727-07
  • Chaudhary, D., Narula, N., Sindhu, S. S., & Behl, R. K. (2013). Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiology and Molecular Biology of Plants, 19(4), 515–519. https://doi.org/10.1007/s12298-013-0178-2
  • Chaulagain, D., & Frugoli, J. (2021). The Regulation of nodule number in legumes is a balance of three signal transduction Pathways. International Journal of Molecular Sciences, 22(3), 1117. https://doi.org/10.3390/ijms22031117
  • Chen, X., Miché, L., Sachs, S., Wang, Q., Buschart, A., Yang, H., Vera Cruz, C. M., Hurek, T., & Reinhold-Hurek, B. (2015). Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. The New Phytologist, 208(2), 531–543. https://doi.org/10.1111/nph.13458
  • Chen, C., & Zhu, H. (2013). Are common symbiosis genes required for endophytic rice-rhizobial interactions? Plant Signaling & Behavior, 8(9), e25453. https://doi.org/10.4161/psb.25453
  • D’Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., & Turlings, T. (2014). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell & Environment, 37(4), 813–826. https://doi.org/10.1111/pce.12220
  • Dastogeer, K. M., Tumpa, F. H., Sultana, A., Akter, M. A., & Chakraborty, A. (2020). Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 23, 100161. https://doi.org/10.1016/j.cpb.2020.100161
  • Dawson, J. O. (2008). Ecology of actinorhizal plants. In K. Pawlowski & W. Newton (Eds.), Nitrogen-fixing actinorhizal symbioses. Nitrogen fixation: Origins, applications, and research progress (Vol. 6, pp. 199–234). Springer.
  • De Meyer, S. E., De Beuf, K., Vekeman, B., & Willems, A. (2015). A large diversity of nonrhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biology & Biochemistry, 83, 1–11. https://doi.org/10.1016/j.soilbio.2015.01.002
  • Dent, D., & Cocking, E. (2017). Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agriculture & Food Security, 6(1), 7. https://doi.org/10.1186/s40066-016-0084-2
  • De Vleesschauwer, D., Djavaheri, M., Bakker, P. A., & Höfte, M. (2008). Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiology, 148(4), 1996–2012. https://doi.org/10.1104/pp.108.127878
  • Dhar Purkayastha, G., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. Plos One, 13(2), e0191761. https://doi.org/10.1371/journal.pone.0191761
  • Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C., & Dixon, R. (2012). Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics, 13(1), 162. https://doi.org/10.1186/1471-2164-13-162
  • Drogue, B., Sanguin, H., Chamam, A., Mozar, M., Llauro, C., Panaud, O., Prigent-Combaret, C., Picault, N., & Wisniewski-Dyé, F. (2014). Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Frontiers in plant science, 5, 607. https://doi.org/10.3389/fpls.2014.00607
  • Dudeja, S. S., Suneja-Madan, P., Paul, M., Maheswari, R., & Kothe, E. (2021). Bacterial endophytes: Molecular interactions with their hosts. Journal of Basic Microbiology, 6(6), 475–505. https://doi.org/10.1002/jobm.202000657
  • Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiome of rice. Proceedings of the National Academy of Sciences of the United States of America, 112, E911–E920. https://doi.org/10.1073/pnas.1414592112
  • Eskin, N., Vessey, K., & Tian, L. (2014). Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. International Journal of Agronomy, 2014, 208383. https://doi.org/10.1155/2014/208383
  • Etesami, H. (2022). Root nodules of legumes: A suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Current Research in Biotechnology, 4, 78–86. https://doi.org/10.1016/j.crbiot.2022.01.003
  • Etesami, H., & Alikhani, H. A. (2017). Evaluation of gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. European Journal of Plant Pathology, 147(1), 7–14. https://doi.org/10.1007/s10658-016-0981-z
  • Fischer, D., Pfitzner, B., Schmid, M., Simões-Araújo, J. L., Reis, V. M., Pereira, W., & Hartmann, A. (2012). Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant and Soil, 356(1), 83–99. https://doi.org/10.1007/s11104-011-0812-0
  • Froussart, E., Bonneau, J., Franche, C., & Bogusz, D. (2016). Recent advances in actinorhizal symbiosis signaling. Plant molecular biology, 90(6), 613–622. https://doi.org/10.1007/s11103-016-0450-2
  • Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1), 73. https://doi.org/10.1186/s13568-018-0608-1
  • Gherbi, H., Markmann, K., Svistoonoff, S., Estevan, J., Autran, D., Giczey, G., Auguy, F., Péret, B., Laplaze, L., Franche, C., Parniske, M., & Bogusz, D. (2008). SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proceedings of the National Academy of Sciences, 105(12), 4928–4932. https://doi.org/10.1073/pnas.0710618105
  • Gond, S. K., Bergen, M. S., Torres, M. S., & White, J. F., Jr. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological research, 172, 79–87. https://doi.org/10.1016/j.micres.2014.11.004
  • Gtari, M., Ghodhbane-Gtari, F., & Nouioui, I. (2020). Frankia soli sp. nov., an actinobacterium isolated from soil beneath Ceanothus jepsonii. International Journal of Systematic and Evolutionary Microbiology, 70(2), 1203–1209. https://doi.org/10.1099/ijsem.0.003899
  • Guo, D. J., Singh, R. K., Singh, P., Li, D. P., Sharma, A., Xing, Y. X., Song, X. P., Yang, L. T., & Li, Y. R. (2020). Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Frontiers in Microbiology, 11, 580081. https://doi.org/10.3389/fmicb.2020.580081
  • Hardoim, P. R., van Overbeek, L. S., & Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463–471. https://doi.org/10.1016/j.tim.2008.07.008
  • Igiehon, N. O., & Babalola, O. O. (2018). Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health, 15(4), 574. https://doi.org/10.3390/ijerph15040574
  • Iniguez, A. L., Dong, Y., & Triplett, E. W. (2004). Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17(10), 1078–1085. https://doi.org/10.1094/MPMI.2004.17.10.1078
  • James, E. K., Reis, V. M., Olivares, F. L., Baldani, J. I., & Döbereiner, J. (1994). Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. Journal of Experimental Botany, 45(6), 757–766. https://doi.org/10.1093/jxb/45.6.757
  • Kawaka, F., Makonde, H., Dida, M., Opala, P., Ombori, O., Maingi, J., & Muoma, J. (2018). Genetic diversity of symbiotic bacteria nodulating common bean (Phaseolus vulgaris) in western Kenya. Plos One, 13(11), e0207403. https://doi.org/10.1371/journal.pone.0207403
  • Kim, J. S., Lee, J., Lee, C. H., Woo, S. Y., Kang, H., Seo, S. G., & Kim, S. H. (2015). Activation of pathogenesis-related genes by the Rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. The Plant Pathology Journal, 31(2), 195–201. https://doi.org/10.5423/PPJ.NT.11.2014.0122
  • Knežević, M., Berić, T., Buntić, A., Delić, D., Nikolić, I., Stanković, S., & Stajković-Srbinović, O. (2021). Potential of root nodule nonrhizobial endophytic bacteria for growth promotion of Lotus corniculatus L. and Dactylis glomerata L. Journal of Applied Microbiology, 131(6), 2929–2940. https://doi.org/10.1111/jam.15152
  • Kumar, V., Behl, R. K., & Narula, N. (2001). Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological research, 156(1), 87–93. https://doi.org/10.1078/0944-5013-00081
  • Kuzmanović, N., Fagorzi, C., Mengoni, A., Lassalle, F., & DiCenzo, G. C. (2022). Taxonomy of Rhizobiaceae revisited: Proposal of a new framework for genus delimitation. International Journal of Systematic and Evolutionary Microbiology, 72(3), 005243. https://doi.org/10.1099/ijsem.0.005243
  • Ladha, J., Tirol-Padre, A., Reddy, C., Cassman, K., K, G., Verma, S., Powlson, D. S., Richter, D. B. D., Chakraborty, D., & Pathak, H. (2016). Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific reports, 6(1), 19355. https://doi.org/10.1038/srep19355
  • Lehnert, N., Dong, H. T., Harland, J. B., Hunt, A. P., & White, C. J. (2018). Reversing nitrogen fixation. Nature Reviews Chemistry, 2(10), 278–289. https://doi.org/10.1038/s41570-018-0041-7
  • Li, Q., & Chen, S. (2020). Transfer of nitrogen fixation (nif) genes to non-diazotrophic hosts. Chembiochem: A European Journal of Chemical Biology, 21(12), 1717–1722. https://doi.org/10.1002/cbic.201900784
  • Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J., & Schenk, P. M. (2017). Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8, 2552. https://doi.org/10.3389/fmicb.2017.02552
  • Liu, L., Zhu, K., Wurzburger, N., & Zhang, J. (2020). Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere, 11(1), e02999. https://doi.org/10.1002/ecs2.2999
  • Li, H., Yue, H., Li, L., Liu, Y., Zhang, H., Wang, J., & Jiang, X. (2021). Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 11(1), 74. https://doi.org/10.1186/s13568-021-01237-1
  • Lu, J., Yang, F., Wang, S., Ma, H., Liang, J., & Chen, Y. (2017). Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Frontiers in Microbiology, 8, 2255. https://doi.org/10.3389/fmicb.2017.02255
  • Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current progress in nitrogen fixing plants and microbiome research. Plants, 9(1), 97. https://doi.org/10.3390/plants9010097
  • Martin Didonet, C. C. G., Chubatsu, L. S., Souza, E. M., Kleina, M., Rego, F. G., Rigo, M. L. U., Yates, M. G., & Pedrosa, F. O. (2000). Genome structure of the genus Azospirillum. Journal of Bacteriology, 182(14), 4113–4116. https://doi.org/10.1128/JB.182.14.4113-4116.2000
  • Mayhood, P., Mirza, B. S., & Nojiri, H. (2021). Soybean Root nodule and rhizosphere microbiome: distribution of rhizobial and nonrhizobial endophytes. Applied and Environmental Microbiology, 87(10), e02884-20. https://doi.org/10.1128/AEM.02884-20
  • Monteiro, R. A., Balsanelli, E., Wassem, R., Marin, A. M., Brusamarello-Santos, L. C., Schmidt, M. A., Tadra-Sfeir, M. Z., Pankievicz, V. C. S., Cruz, L. M., Chubatsu, L. S., Pedrosa, F. O., & Souza, E. M. (2012). Herbaspirillum-plant interactions: Microscopical, histological and molecular aspects. Plant and Soil, 356(1–2), 175–196. https://doi.org/10.1007/s11104-012-1125-7
  • Mowafy, A. M., Agha, M. S., Haroun, S. A., Abbas, M. A., & Elbalkini, M. (2022). Insights in nodule-inhabiting plant growth promoting bacteria and their ability to stimulate Vicia faba growth. Egyptian Journal of Basic and Applied Sciences, 9(1), 51–64. https://doi.org/10.1080/2314808X.2021.2019418
  • Muindi, M. M., Muthini, M., Njeru, E. M., & Maingi, J. (2021). Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon, 7(4), e06867. https://doi.org/10.1016/j.heliyon.2021.e06867
  • Mus, F., Crook, M. B., Garcia, K., Garcia Costas, A., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M. -H., Oldroyd, G. E. D., Poole, P. S., Udvardi, M. K., Voigt, C. A., Ané, J. -M., & Peters, J. W. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied Environmental Microbiology, 82(13), 3698–3710. https://doi.org/10.1128/AEM.01055-16
  • Muthukumarasamy, R., Kang, U. G., Park, K. D., Jeon, W. T., Park, C. Y., Cho, Y. S., Kwon, S. W., Song, J., Roh, D. H., & Revathi, G. (2007). Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. Journal of Applied Microbiology, 102(4), 981–991. https://doi.org/10.1111/j.1365-2672.2006.03157.x
  • Oldroyd, G. E., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24. https://doi.org/10.1016/j.copbio.2013.08.006
  • Peix, A., Ramírez-Bahena, M. H., Velázquez, E., & Bedmar, E. J. (2015). Bacterial associations with legumes. Critical Reviews in Plant Sciences, 34(1–3), 17–42. https://doi.org/10.1080/07352689.2014.897899
  • Peoples, M. B., Ladha, J. K., & Herridge, D. F. (1995). Enhancing legume N 2 fixation through plant and soil management. Plant and Soil, 174(1–2), 83–101. https://doi.org/10.1007/BF00032242
  • Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological research, 169(5–6), 325–336. https://doi.org/10.1016/j.micres.2013.09.011
  • Perrine-Walker, F. M., Prayitno, J., Rolfe, B. G., Weinman, J. J., & Hocart, C. H. (2007). Infection process and the interaction of rice roots with rhizobia. Journal of Experimental Botany, 58(12), 3343–3350. https://doi.org/10.1093/jxb/erm181
  • Poole, P., Ramachandran, V., & Terpolilli, J. (2018). Rhizobia: From saprophytes to endosymbionts. Nature Reviews: Microbiology, 16(5), 291–303. https://doi.org/10.1038/nrmicro.2017.171
  • Rediers, H., Bonnecarrère, V., Rainey, P. B., Hamonts, K., Vanderleyden, J., & De Mot, R. (2003). Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Applied and Environmental Microbiology, 69(11), 6864–6874. https://doi.org/10.1128/AEM.69.11.6864-6874.2003
  • Rogers, C., & Oldroyd, G. E. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 65(8), 1939–1946. https://doi.org/10.1093/jxb/eru098
  • Rosenblueth, M., Ormeño-Orrillo, E., López-López, A., Rogel, M. A., Reyes-Hernández, B. J., Martínez-Romero, J. C., Reddy, P. M., & Martínez-Romero, E. (2018). Nitrogen Fixation in Cereals. Frontiers in Microbiology, 9, 1794. https://doi.org/10.3389/fmicb.2018.01794
  • Sampedro, I., Parales, R. E., Krell, T., & Hill, J. E. (2015). Pseudomonas chemotaxis. FEMS Microbiology Reviews, 39(1), 17–46. https://doi.org/10.1111/1574-6976.12081
  • Sandhu, N., Sethi, M., Kumar, A., Dang, D., Singh, J., & Chhuneja, P. (2021). Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: a review. Frontiers in plant science, 12, 657629. https://doi.org/10.3389/fpls.2021.657629
  • Sandhya, V. S. K. Z., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21–30. https://doi.org/10.1007/s10725-010-9479-4
  • Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111(5), 743–767. https://doi.org/10.1093/aob/mct048
  • Scharf, B. E., Hynes, M. F., & Alexandre, G. M. (2016). Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant molecular biology, 90(6), 549–559. https://doi.org/10.1007/s11103-016-0432-4
  • Schreiber, L., Krimm, U., Knoll, D., Sayed, M., Auling, G., & Kroppenstedt, R. M. (2005). Plant-microbe interactions: Identification of epiphytic bacteria and their ability to alter leaf surface permeability. The New Phytologist, 166(2), 589–594. https://doi.org/10.1111/j.1469-8137.2005.01343.x
  • Sellstedt, A., & Richau, K. H. (2013). Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS microbiology letters, 342(2), 179–186. https://doi.org/10.1111/1574-6968.12116
  • Selvakumar, G., Kundu, S., Gupta, A. D., Shouche, Y. S., & Gupta, H. S. (2008). Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Current microbiology, 56(2), 134–139. https://doi.org/10.1007/s00284-007-9062-z
  • Sevilla, M., Burris, R. H., Gunapala, N., & Kennedy, C. (2001). Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif-mutants strains. Molecular Plant-Microbe Interactions, 14(3), 358–366. https://doi.org/10.1094/MPMI.2001.14.3.358
  • Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S. M., Yun, B. W., & Lee, I. J. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106, 236–243. https://doi.org/10.1016/j.plaphy.2016.05.006
  • Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Rreviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  • Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24(4), 487–506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  • Tariq, M., Hameed, S., Yasmeen, T., Zahid, M., & Zafar, M. (2014). Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology & Biotechnology, 30(2), 719–725. https://doi.org/10.1007/s11274-013-1488-9
  • Tokgöz, S., Lakshman, D. K., Ghozlan, M. H., Pinar, H., Roberts, D. P., & Mitra, A. (2020). Soybean nodule-associated non-rhizobial bacteria inhibit plant pathogens and induce growth promotion in tomato. Plants, 9(11), 1494. https://doi.org/10.3390/plants9111494
  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
  • Vandana, U. K., Rajkumari, J., Singha, L. P., Satish, L., Alavilli, H., Sudheer, P., Chauhan, S., Ratnala, R., Satturu, V., Mazumder, P. B., & Pandey, P. (2021). The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology, 10(2), 101. https://doi.org/10.3390/biology10020101
  • Vorholt, J. (2012). Microbial life in the phyllosphere. Nature Reviews: Microbiology, 10(12), 828–840. https://doi.org/10.1038/nrmicro2910
  • Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moënne-Loccoz, Y., & Défago, G. (2001). Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiology Ecology, 37(2), 105–116. https://doi.org/10.1111/j.1574-6941.2001.tb00858.x
  • Wu, L. J., Wang, H. Q., Wang, E. T., Chen, W. X., & Tian, C. F. (2011). Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in different ecoregions of China. FEMS microbiology ecology, 76(3), 439–450. https://doi.org/10.1111/j.1574-6941.2011.01064.x
  • Xu, L., Zhang, Y., Wang, L., Chen, W., & Wei, G. (2014). Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Systematic and Applied Microbiology, 37(6), 457–465. https://doi.org/10.1016/j.syapm.2014.05.009
  • Zgadzaj, R., James, E. K., Kelly, S., Kawaharada, Y., de Jonge, N., Jensen, D. B., Madsen, L. H., & Radutoiu, S. (2015). A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genetics, 11(6), e1005280. https://doi.org/10.1371/journal.pgen.1005280

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.