667
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential

, , , , , , & ORCID Icon show all
Received 20 Aug 2022, Accepted 13 Nov 2022, Published online: 30 Jan 2023

References

  • Aarti, C., Martina, C., & Khusro, A. (2020). Antimycobacterial, anticancer, and antiviral properties of probiotics: An overview. Microbes and Infectious Diseases, 0(0). https://doi.org/10.21608/mid.2020.34124.1029
  • Aghajanpour, M., Nazer, M. R., Obeidavi, Z., Akbari, M., Ezati, P., & Kor, N. M. (2017). Functional foods and their role in cancer prevention and health promotion: A comprehensive review. American Journal of Cancer Research, 7(4), 740.
  • Ambrogi, V., Bottacini, F., Cao, L., Kuipers, B., Schoterman, M., & van Sinderen, D. (2021). Galacto-oligosaccharides as infant prebiotics: Production, application, bioactive activities and future perspectives. Critical Reviews in Food Science and Nutrition, 1–14. https://doi.org/10.1080/10408398.2021.1953437
  • Amorim, C., Silvério, S. C., Prather, K. L., & Rodrigues, L. R. (2019). From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnology Advances, 37(7), 107397. https://doi.org/10.1016/j.biotechadv.2019.05.003
  • Andberg, M., Mollerup, F., Parikka, K., Koutaniemi, S., Boer, H., Juvonen, M., Master, E., Tenkanen, M., Kruus, K., & Cullen, D. (2017). A novel colletotrichum graminicola raffinose oxidase in the AA5 family. Applied and Environmental Microbiology, 83(20). https://doi.org/10.1128/AEM.01383-17
  • Anderson, H. E., Santos, I. C., Hildenbrand, Z. L., & Schug, K. A. (2019). A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Analytica chimica acta, 1085, 1–20. https://doi.org/10.1016/j.aca.2019.07.061
  • Aquino, L. F., de Moura Bell, J. M., Cohen, J. L., Liu, Y., Lee, H., de Melo Silva, V. L., Domizio, P., Junior, C. A. C., & Barile, D. (2017). Purification of caprine oligosaccharides at pilot-scale. Journal of Food Engineering, 214, 226–235. https://doi.org/10.1016/j.jfoodeng.2017.06.009
  • Arnold, J. W., Simpson, J. B., Roach, J., Bruno-Barcena, J. M., & Azcarate-Peril, M. A. (2018). Prebiotics for lactose intolerance: Variability in galacto-oligosaccharide utilization by intestinal lactobacillus rhamnosus. Nutrients, 10(10), 1517. https://doi.org/10.3390/nu10101517
  • Asadpoor, M., Ithakisiou, G. N., Henricks, P. A., Pieters, R., Folkerts, G., & Braber, S. (2021). Non-digestible oligosaccharides and short chain fatty acids as therapeutic targets against enterotoxin-producing bacteria and their toxins. Toxins, 13(3), 175. https://doi.org/10.3390/toxins13030175
  • Ashaolu, T. J. (2020). Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomedicine & Pharmacotherapy, 130, 110625. https://doi.org/10.1016/j.biopha.2020.110625
  • Ashwini, A., Ramya, H., Ramkumar, C., Reddy, K. R., Kulkarni, R. V., Abinaya, V., Naveen, S., & Raghu, A. V. (2019). Reactive mechanism and the applications of bioactive prebiotics for human health. Journal of Microbiological Methods, 159, 128–137. https://doi.org/10.1016/j.mimet.2019.02.019
  • Awasthi, M. K., Tarafdar, A., Gaur, V. K., Amulya, K., Narisetty, V., Yadav, D. K., Sindhu, R., Binod, P., Negi, T., Pandey, A., Zhang, Z., & Sirohi, R. (2022). Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. International Journal of Food Microbiology, 368, 109610. https://doi.org/10.1016/j.ijfoodmicro.2022.109610
  • Aw, W., & Fukuda, S. (2018). Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation, 9(1), 5–12. https://doi.org/10.1111/jdi.12673
  • Azad, M., Kalam, A., Sarker, M., Li, T., & Yin, J. (2018). Probiotic species in the modulation of gut microbiota: An overview. BioMed Research International, 2018, 1–8. https://doi.org/10.1155/2018/9478630
  • Belleville, M. P., Sanchez-marcano, J., Bargeman, G., & Timmer, M. (2021). Nanofiltration in the food industry. In A. I. Schaefer & A. G. Fane (Eds.), Nanofiltration: Principles, Applications, and New Materials (pp. 499–542). Wiley. https://doi.org/10.1002/9783527824984.ch11
  • Belorkar, S. A. (2021). Functional oligosaccharides and microbial sources. In S. P. Singh & S. K. Upadhyay (Eds.), Bioprospecting of Microorganism-Based Industrial Molecules (pp. 337–356). Wiley. https://doi.org/10.1002/9781119717317.ch17
  • Bertocchi, M., Zampiga, M., Luise, D., Vitali, M., Sirri, F., Slawinska, A., Tavaniello, S., Palumbo, O., Archetti, I., & Maiorano, G. (2019). In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact on Transcriptomic Profile and Plasma Immune Parameters. Animals (Basel), 9(12) 1067. https://doi.org/10.3390/ani9121067
  • Bhardwaj, N., Kumar, B., Agarwal, K., Chaturvedi, V., & Verma, P. (2019). Purification and characterization of a thermo-acid/alkali stable xylanases from aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. International Journal of Biological Macromolecules, 122, 1191–1202. https://doi.org/10.1016/j.ijbiomac.2018.09.070
  • Boekhout, T., Aime, M. C., Begerow, D., Gabaldón, T., Heitman, J., Kemler, M., Khayhan, K., Lachance, M. A., Louis, E. J., Sun, S., Vu, D., & Yurkov A. (2021). The evolving species concepts used for yeasts: From phenotypes and genomes to speciation networks. Fungal diversity, 109(1), 27–55. https://doi.org/10.1007/s13225-021-00475-9
  • Bohra, V., Dafale, N. A., & Purohit, H. (2018). Paenibacillus polymyxa ND25: Candidate genome for lignocellulosic biomass utilization. 3 Biotech, 8(5), 1–7. https://doi.org/10.1007/s13205-018-1274-3
  • Bravo, D., Landete, J. M. J. B., & Reviews, G. E. (2017). Genetic engineering as a powerful tool to improve probiotic strains. Biotechnology & Genetic Engineering Reviews, 33(2), 173–189. https://doi.org/10.1080/02648725.2017.1408257
  • Brenelli, L. B., Figueiredo, F. L., Damasio, A., Franco, T. T., & Rabelo, S. C. (2020). An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale. Bioresource Technology, 313, 123637. https://doi.org/10.1016/j.biortech.2020.123637
  • Cao, G., Zeng, X., Chen, A., Zhou, L., Zhang, L., Xiao, Y., & Yang, C. (2013). Effects of a probiotic, enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with escherichia coli K88. Poultry Science, 92(11), 2949–2955. https://doi.org/10.3382/ps.2013-03366
  • Castro-Muñoz, R., & García-Depraect, O. (2021). Membrane-based harvesting processes for microalgae and their valuable-related molecules: A review. Membranes, 11(8), 585. https://doi.org/10.3390/membranes11080585
  • Celebioglu, H. U., & Svensson, B. (2018). Dietary nutrients, proteomes, and adhesion of probiotic lactobacilli to mucin and host epithelial cells. Microorganisms, 6(3), 90. https://doi.org/10.3390/microorganisms6030090
  • Chattopadhyay, I., Lu, W., Manikam, R., Malarvili, M., Ambati, R. R., & Gundamaraju, R. (2022). Can metagenomics unravel the impact of oral bacteriome in human diseases? Biotechnology & Genetic Engineering Reviews, 1–33. https://doi.org/10.1080/02648725.2022.2102877
  • Chen, M., Lei, X., Chen, C., Zhang, S., Xie, J., & Wei, D. (2015). Cloning, overexpression, and characterization of a highly active endoinulinase gene from aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167. https://doi.org/10.1007/s12010-014-1296-1
  • Chen, J., & Vitetta, L. (2018). Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clinical colorectal cancer, 17(3), e541–544. https://doi.org/10.1016/j.clcc.2018.05.001
  • Chimtong, S., Saenphoom, P., Karageat, N., & Somtua, S. (2016). Oligosaccharide production from agricultural residues by non-starch polysaccharide degrading enzymes and their prebiotic properties. Agriculture and Agricultural Science Procedia, 11, 131–136. https://doi.org/10.1016/j.aaspro.2016.12.022
  • Choukade, R., & Kango, N. (2019). Characterization of a mycelial fructosyltransferase from aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chemistry, 286, 434–440. https://doi.org/10.1016/j.foodchem.2019.02.025
  • Colantonio, A. G., Werner, S. L., & Brown, M. (2020). The effects of prebiotics and substances with prebiotic properties on metabolic and inflammatory biomarkers in individuals with type 2 diabetes mellitus: A systematic review. Journal of the Academy of Nutrition and Dietetics, 120(4), 587–607. e582. https://doi.org/10.1016/j.jand.2018.12.013
  • Costa, M. F., Pimentel, T. C., Guimaraes, J. T., Balthazar, C. F., Rocha, R. S., Cavalcanti, R. N., Esmerino, E. A., Freitas, M. Q., Raices, R. S., & Silva, M. C. (2019). Impact of prebiotics on the rheological characteristics and volatile compounds of Greek yogurt. Lwt, 105, 371–376. https://doi.org/10.1016/j.lwt.2019.02.007
  • Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D. J., Petrova, M. I., Steinert, R. E., Swanson, K. S., van Sinderen, D., Vulevic, J., & Gibson, G. R. (2021). Shaping the future of probiotics and prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/j.tim.2021.01.003
  • da Silva Menezes, B., Rossi, D. M., & Ayub, M. A. Z. (2017). Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates. World Journal of Microbiology & Biotechnology, 33(3), 1–12. https://doi.org/10.1007/s11274-017-2226-5
  • Davani Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 92. https://doi.org/10.3390/foods8030092
  • Debnath, N., Kumar, R., Kumar, A., Mehta, P. K., & Yadav, A. K. (2021). Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnology & Genetic Engineering Reviews, 37(2), 105–153. https://doi.org/10.1080/02648725.2021.1989847
  • de Freitas, C., Carmona, E., & Brienzo, M. (2019). Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioactive Carbohydrates and Dietary Fibre, 18, 100184. https://doi.org/10.1016/j.bcdf.2019.100184
  • de la Rosa, O., Flores-Gallegos, A. C., Muñíz-Marquez, D., Nobre, C., Contreras-Esquivel, J. C., & Aguilar, C. N. (2019). Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends in Food Science & Technology, 91, 139–146. https://doi.org/10.1016/j.tifs.2019.06.013
  • de Paulo Farias, D., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/j.tifs.2019.09.004
  • de Sire, A., de Sire, R., Curci, C., Castiglione, F., & Wahli, W. (2022). Role of dietary supplements and probiotics in modulating microbiota and bone health: The gut–bone axis. Cells 11(4), 743. https://doi.org/10.3390/cells11040743
  • Doan, C. T., Chen, C. L., Nguyen, V. B., Tran, T. N., Nguyen, A. D., & Wang, S. L. (2021). Conversion of pectin-containing by-products to pectinases by Bacillus amyloliquefaciens and its applications on hydrolyzing banana peels for prebiotics production. Polymers, 13(9), 1483. https://doi.org/10.3390/polym13091483
  • Duan, W., Ji, W., Wei, Y., Zhao, R., Chen, Z., Geng, Y., Jing, F., & Wang, X. (2018). Separation and purification of fructo-oligosaccharide by high-speed counter-current chromatography coupled with precolumn derivatization. Molecules, 23(2), 381. https://doi.org/10.3390/molecules23020381
  • Duarte, L. S., da Natividade Schöffer, J., Lorenzoni, A. S. G., Rodrigues, R. C., Rodrigues, E., & Hertz, P. F. (2017). A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process Biochemistry, 55, 96–103. https://doi.org/10.1016/j.procbio.2017.01.015
  • El Enshasy, H. A., Kandiyil, S. K., Malek, R., & Othman, N. Z. (2016). Microbial xylanases: Sources, types, and their applications. In V. K. Gupta (Ed.), Microbial enzymes in bioconversions of biomass (pp. 151–213). Springer. https://doi.org/10.1007/978-3-319-43679-1_7
  • Enam, F., & Mansell, T. J. (2019). Prebiotics: Tools to manipulate the gut microbiome and metabolome. Journal of Industrial Microbiology & Biotechnology, 46(9–10), 1445–1459. https://doi.org/10.1007/s10295-019-02203-4
  • Eslami, M., Yousefi, B., Kokhaei, P., Hemati, M., Nejad, Z. R., Arabkari, V., & Namdar, A. (2019). Importance of probiotics in the prevention and treatment of colorectal cancer. Journal of cellular physiology, 234(10), 17127–17143. https://doi.org/10.1002/jcp.28473
  • Fan, R., Burghardt, J. P., Huang, J., Xiong, T., & Czermak, P. (2020). Purification of crude fructo-oligosaccharide preparations using probiotic bacteria for the selective fermentation of monosaccharide byproducts. Frontiers in Microbiology, 11, 620626. https://doi.org/10.3389/fmicb.2020.620626
  • Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9
  • Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut microbes, 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944
  • Ferrão, L. L., Ferreira, M. V. S., Cavalcanti, R. N., Carvalho, A. F. A., Pimentel, T. C., Silva, H. L., Silva, R., Esmerino, E. A., Neto, R. P., Tavares, M. I. B., Freitas, M. Q., Menezes, J. C. V., Cabral, L. M., Moraes, J., Silva, M. C., Mathias, S. P., Raices, R. S. L., Pastore, G. M., & Cruz, A. G. (2018). The xylooligosaccharide addition and sodium reduction in requeijão cremoso processed cheese. Food Research International, 107, 137–147. https://doi.org/10.1016/j.foodres.2018.02.018
  • Fischer, C., & Kleinschmidt, T. (2018). Synthesis of galactooligosaccharides in milk and whey: A review. Comprehensive Reviews in Food Science and Food Safety, 17(3), 678–697. https://doi.org/10.1111/1541-4337.12344
  • Florowska, A., Krygier, K., Florowski, T., & Dłużewska, E. (2016). Prebiotics as functional food ingredients preventing diet-related diseases. Food & Function, 7(5), 2147–2155. https://doi.org/10.1039/C5FO01459J
  • Freitas, C. D., Terrone, C. C., Forsan, C. F., Milagres, A. M., & Brienzo, M. (2022). Oligosaccharides from lignocellulosic biomass and their biological and physicochemical properties. In M. Brienzo (Ed.), Hemicellulose biorefinery: A sustainable solution for value addition to bio-based products and bioenergy (pp. 275–309). Springer. https://doi.org/10.1007/978-981-16-3682-0_9
  • Gadde, U., Kim, W., Oh, S., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Animal Health Research Reviews, 18(1), 26–45. https://doi.org/10.1017/S1466252316000207
  • Galermo, A. G., Nandita, E., Barboza, M., Amicucci, M. J., Vo, T. T. T., & Lebrilla, C. B. (2018). Liquid chromatography–tandem mass spectrometry approach for determining glycosidic linkages. Analytical Chemistry, 90(21), 13073–13080. https://doi.org/10.1021/acs.analchem.8b04124
  • Gatew, H., & Tarekegn, M. T. (2018). Next-generation sequencing platforms for latest livestock reference genome assemblies. African Journal of Biotechnology, 17(39), 1232–1240. https://doi.org/10.5897/AJB2018.16605
  • Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491. https://doi.org/10.1038/nrgastro.2017.75
  • Gilormini, P. -A., Batt, A. R., Pratt, M. R., & Biot, C. (2018). Asking more from metabolic oligosaccharide engineering. Chemical Science, 9(39), 7585–7595. https://doi.org/10.1039/C8SC02241K
  • Guarino, M. P. L., Altomare, A., Emerenziani, S., DiRosa, C., Ribolsi, M., Balestrieri, P., Iovino, P., Rocchi, G., & Cicala, M. (2020). Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients, 12(4), 1037. https://doi.org/10.3390/nu12041037
  • Gujar, V. V., Fuke, P., Khardenavis, A. A., & Purohit, H. (2018a). Annotation and De Novo sequence characterization of extracellular β-fructofuranosidase from penicillium chrysogenum strain HKF42. Indian Journal of Microbiology, 58(2), 227–233. https://doi.org/10.1007/s12088-017-0704-y
  • Gujar, V. V., Fuke, P., Khardenavis, A. A., & Purohit, H. (2018b). Draft genome sequence of penicillium chrysogenum strain HKF2, a fungus with potential for production of prebiotic synthesizing enzymes. 3 Biotech, 8(2), 1–5. https://doi.org/10.1007/s13205-018-1132-3
  • Guo, Q., Goff, H. D., & Cui, S. W. (2018). Structural characterisation of galacto-oligosaccharides (VITAGOS™) sythesized by transgalactosylation of lactose. Bioactive Carbohydrates and Dietary Fibre, 14, 33–38. https://doi.org/10.1016/j.bcdf.2017.07.007
  • Hanau, S., Almugadam, S. H., Sapienza, E., Cacciari, B., Manfrinato, M. C., Trentini, A., Kennedy, J. F. (2020). Applications schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. Carbohydrate Polymer Technologies and Applications, 1, 100013. https://doi.org/10.1016/j.carpta.2020.100013
  • Han, S., Pan, L., Zeng, W., Yang, L., Yang, D., Chen, G., & Liang, Z. (2021). Improved production of fructooligosaccharides (FOS) using a mutant strain of aspergillus oryzae S719 overexpressing β-fructofuranosidase (FTase) genes. LWT, 146, 111346. https://doi.org/10.1016/j.lwt.2021.111346
  • Han, Y. Z., Zhou, C. C., Xu, Y. Y., Yao, J. X., Chi, Z., Chi, Z. M., & Liu, G. L. (2017). High-efficient production of fructo-oligosaccharides from inulin by a two-stage bioprocess using an engineered yarrowia lipolytica strain. Carbohydrate polymers, 173, 592–599. https://doi.org/10.1016/j.carbpol.2017.06.043
  • Holck, J., Hjernø, K., Lorentzen, A., Vigsnæs, L. K., Hemmingsen, L., Licht, T. R., Mikkelsen, J. D., & Meyer, A. S. (2011). Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochemistry, 46(5), 1039–1049. https://doi.org/10.1016/j.procbio.2011.01.013
  • Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
  • Hsu, C., Lee, S., & Chou, C. (2007). Enzymatic production of galactooligosaccharides by β-galactosidase from bifidobacterium longum BCRC 15708. Journal of Agricultural and Food Chemistry, 55(6), 2225–2230. https://doi.org/10.1021/jf063126+
  • Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., & Yong, Q. (2019). A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from moso bamboo prehydrolyzate. Biotechnology for Biofuels, 12(1), 1–13. https://doi.org/10.1186/s13068-019-1527-3
  • Huang, M. P., Wu, M., Xu, Q. S., Mo, D. J., & Feng, J. X. (2016). Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide-producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. Journal of Agricultural and Food Chemistry, 64(33), 6425–6432. https://doi.org/10.1021/acs.jafc.6b02115
  • Hutkins, R. W., Krumbeck, J. A., Bindels, L. B., Cani, P. D., Fahey, G., Jr., Goh, Y. J., Hamaker, B., Martens, E. C., Mills, D. A., Rastal, R. A., Vaughan, E., & Sanders, M. E. (2016). Prebiotics: Why definitions matter. Current Opinion in Biotechnology, 37, 1–7. https://doi.org/10.1016/j.copbio.2015.09.001
  • Jagtap, S., Deshmukh, R. A., Menon, S., & Das, S. (2017). Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresource Technology, 245, 283–288. https://doi.org/10.1016/j.biortech.2017.08.174
  • Jain, M., Gote, M., Dubey, A. K., Narayanan, S., Krishnappa, H., Kumar, D. S., Ravi, G., Vijayasarathi, S., & Shankar, S. (2018). Safety evaluation of fructooligosaccharide (FOSSENCETM): Acute, 14-day, and subchronic oral toxicity study in wistar rats. Toxicology Research and Application, 2, 2397847318787750. https://doi.org/10.1177/2397847318787750
  • Jana, M., Maity, C., Samanta, S., Pati, B. R., Islam, S. S., Mohapatra, P. K. D., & Mondal, K. C. (2013). Salt-independent thermophilic α-amylase from bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides. Industrial Crops and Products, 41, 386–391. https://doi.org/10.1016/j.indcrop.2012.04.048
  • Joshi, D., Roy, S., & Banerjee, S. (2018). Prebiotics: A functional food in health and disease. In S. C. Mandal, V. Mandal & T. Konishi (Eds.), Natural products and drug discovery (pp. 507–523). Elsevier. https://doi.org/10.1016/B978-0-08-102081-4.00019-8
  • Kaur, A. P., Bhardwaj, S., Dhanjal, D. S., Nepovimova, E., Cruz-Martins, N., Kuča, K., Chopra, C., Singh, R., Kumar, H., Șen, F. J. B., Kumar, V., Verma, R., & Kumar, D. (2021). Plant prebiotics and their role in the amelioration of diseases. Biomolecules, 11(3), 440. https://doi.org/10.3390/biom11030440
  • Kaur, R., & Panesar, P. S. (2022). Galactooligosaccharides as Potential Prebiotics. In P. S. Panesar & A. K. Anal (Eds.), Probiotics, prebiotics and synbiotics: Technological advancements towards safety and industrial applications (pp. 272–306). Wiley. https://doi.org/10.1002/9781119702160.ch12
  • Khaleghipour, L., Linares-Pastén, J. A., Rashedi, H., Ranaei Siadat, S. O., Jasilionis, A., Al-Hamimi, S., Sardari, R. R., & Karlsson, E. N. (2021). Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose. Biotechnology for Biofuels, 14(1), 1–19. https://doi.org/10.1186/s13068-021-01993-z
  • Khatami, S. H., Vakili, O., Ahmadi, N., Soltani Fard, E., Mousavi, P., Khalvati, B., Maleksabet, A., Savardashtaki, A., Taheri-anganeh, M., Movahedpour, A. J. B., & Biochemistry, A. (2021). Glucose oxidase: Applications, sources, and recombinant production.
  • Khatri, I., Tomar, R., Ganesan, K., Prasad, G., & Subramanian, S. (2017). Complete genome sequence and comparative genomics of the probiotic yeast saccharomyces boulardii. Scientific reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-00414-2
  • Klukowski, P., & Schubert, M. (2019). Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics. Bioinformatics, 35(2), 293–300. https://doi.org/10.1093/bioinformatics/bty465
  • Kruschitz, A., & Nidetzky, B. (2020). Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnology Advances, 43, 107568. https://doi.org/10.1016/j.biotechadv.2020.107568
  • Kuhn, R. C., Mazutti, M. A., & Filho, F. M. (2014). Separation and purification of fructooligosaccharides on a zeolite fixed-bed column. Journal of Separation Science, 37(8), 927–933. https://doi.org/10.1002/jssc.201300979
  • Kuhn, R. C., Palacio, L., Prádanos, P., Hernández, A., & Filho, F. M. (2011). Selection of membranes for puri?cation of fructooligosaccharides. Desalination and Water Treatment, 27(1–3), 18–24. https://doi.org/10.5004/dwt.2011.2038
  • Kukwa, R. E., Ishwah, B., Oklo, A. D., Kukwa, D. T., Samoh, F. T., & Nomor, A. S. (2020). A simple zeolite-based treatment of soya bean oil mill wastewater for irrigation purposes. American Journal of Chemical Engineering, 8(1), 19–26. https://doi.org/10.11648/j.ajche.20200801.14
  • Kumar, S. S., & Raghavendra, B. K. (2019). Diseases detection of various plant leaf using image processing techniques: A review. 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, (pp. 313–316). IEEE. https://doi.org/10.1109/ICACCS.2019.8728325
  • Kundu, P., Kumar, S., Ahluwalia, V., Kansal, S. K., & Elumalai, S. (2018). Extraction of arabinoxylan from corncob through modified alkaline method to improve xylooligosaccharides synthesis. Bioresource Technology Reports, 3, 51–58. https://doi.org/10.1016/j.biteb.2018.01.007
  • Lam, S. C., Rodriguez, E. S., Haddad, P. R., & Paull, B. (2019). Recent advances in open tubular capillary liquid chromatography. The Analyst, 144(11), 3464–3482. https://doi.org/10.1039/C9AN00329K
  • Lamsal, B. P. (2012). Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. Journal of the Science of Food and Agriculture, 92(10), 2020–2028. https://doi.org/10.1002/jsfa.5712
  • Langa, S., van den Bulck, E., Peirotén, A., Gaya, P., Schols, H., & Arqués, J. (2019). Application of lactobacilli and prebiotic oligosaccharides for the development of a synbiotic semi-hard cheese. Lwt, 114, 108361. https://doi.org/10.1016/j.lwt.2019.108361
  • Leung, K., Ras, E., Ferguson, K. B., Ariëns, S., Babendreier, D., Bijma.,…, Pannebakker, B. A. (2020). Next-generation biological control: The need for integrating genetics and genomics. Biological Reviews, 95(6), 1838–1854. https://doi.org/10.1111/brv.12641
  • Lu, L. L., Xiao, M., Li, Z. Y., Li, Y. M., & Wang, F. S. (2009). A novel transglycosylating β-galactosidase from enterobacter cloacae B5. Process Biochemistry, 44(2), 232–236. https://doi.org/10.1016/j.procbio.2008.10.010
  • Maischberger, T., Nguyen, T. H., Sukyai, P., Kittl, R., Riva, S., Ludwig, R., & Haltrich, D. (2008). Production of lactose-free galacto-oligosaccharide mixtures: Comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydrate Research, 343(12), 2140–2147. https://doi.org/10.1016/j.carres.2008.01.040
  • Malekpour, A., Forouzesh, M., Gholamzadeh, S., Ghasemi, Y., & Moaddeli, M. S. (2018). Recent findings in production and health benefits of prebiotics; a review of literatures. Trends in Pharmaceutical Sciences, 4(4), 197–204.
  • Manes, N. P., Shulzhenko, N., Nuccio, A. G., Azeem, S., Morgun, A., Nita Lazar, A., & Gibbons, S. M. (2017). Multi-omics comparative analysis reveals multiple layers of host signaling pathway regulation by the gut microbiota. msystems, 2(5). https://doi.org/10.1128/mSystems.00107-17
  • Mano, M. C. R., Neri-Numa, I. A., da Silva, J. B., Paulino, B. N., Pessoa, M. G., & Pastore, G. M. (2018). Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry. Applied Microbiology and Biotechnology, 102(1), 17–37. https://doi.org/10.1007/s00253-017-8564-2
  • The MarketWatch News Department. (2022, March 07). Prebiotics Ingredients Market 2022 Growth, Trend, Analysis, Future Opportunities and Industry Forecast to 2030. https://www.marketwatch.com/press-release/prebiotics-ingredients-market-2022-growth-trend-analysis-future-opportunities-and-industry-forecast-to-2030-2022-03-07
  • Martins, M., Ávila, P. F., de Andrade, C. C. P., & Goldbeck, R. (2020). Synergic recombinant enzyme association to optimize xylo-oligosaccharides production from agricultural waste. Biocatalysis and Agricultural Biotechnology, 28, 101747. https://doi.org/10.1016/j.bcab.2020.101747
  • Matencio, A., Navarro-Orcajada, S., Garcia-Carmona, F., & López-Nicolás, J. M. (2020). Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology, 104, 132–143. https://doi.org/10.1016/j.tifs.2020.08.009
  • McDowall, S. C., Braune, M., & Nitzsche, R. (2022). Recovery of bio-based medium-chain fatty acids with membrane filtration. Separation and Purification Technology, 286, 120430. https://doi.org/10.1016/j.seppur.2021.120430
  • Mechelke, M., Herlet, J., Benz, J. P., Schwarz, W. H., Zverlov, V. V., Liebl, W., & Kornberger, P. (2017). HPAEC-PAD for oligosaccharide analysis—novel insights into analyte sensitivity and response stability. Analytical and Bioanalytical Chemistry, 409(30), 7169–7181. https://doi.org/10.1007/s00216-017-0678-y
  • Menéndez, C., Martínez, D., Pérez, E. R., Musacchio, A., Ramírez, R., López-Munguía, A., & Hernández, L. (2019). Engineered thermostable β–fructosidase from thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzyme and Microbial Technology, 125, 53–62. https://doi.org/10.1016/j.enzmictec.2019.02.002
  • Miao, H., Dan, W., Jing, W., & Chen, J. (2014). Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in pichia pastoris and its application in inulooligosaccharide production. Journal of Industrial Microbiology & Biotechnology, 41(1), 105–114. https://doi.org/10.1007/s10295-013-1341-z
  • Mohanty, D., Misra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
  • Mohapatra, B. R. (2020). Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel arthrobacter species AD-10. Biocatalysis and Agricultural Biotechnology, 23, 101458. https://doi.org/10.1016/j.bcab.2019.101458
  • Mohapatra, S., Mishra, C., Behera, S. S., & Thatoi, H. (2017). Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass–a review. Renewable and Sustainable Energy Reviews, 78, 1007–1032. https://doi.org/10.1016/j.rser.2017.05.026
  • Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463–6472. https://doi.org/10.1007/s00253-019-09978-7
  • Montemurro, N., Orfanioti, A., Manasfi, R., Thomaidis, N. S., & Pérez, S. (2020). Comparison of high resolution mrm and sequential window acquisition of all theoretical fragment-ion acquisition modes for the quantitation of 48 wastewater-borne pollutants in lettuce. Journal of Chromatography A, 1631, 461566. https://doi.org/10.1016/j.chroma.2020.461566
  • Morales-Arrieta, S., Rodríguez, M. E., Segovia, L., López-Munguía, A., & Olvera-Carranza, C. (2006). Identification and functional characterization of levS, a gene encoding for a levansucrase from leuconostoc mesenteroides NRRL B-512 F. Gene, 376(1), 59–67. https://doi.org/10.1016/j.gene.2006.02.007
  • Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41(9), 1913–1923. https://doi.org/10.1016/j.procbio.2006.05.011
  • Nader-Macías, M. E. F., De Gregorio, P. R., & Silva, J. A. (2021). Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. Pharmacology Research & Perspectives, 9(5), e00787. https://doi.org/10.1002/prp2.787
  • Nair, L. G., Agrawal, K., & Verma, P. (2022). An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: A green leap towards imperishable energy-based future. Biotechnology & Genetic Engineering Reviews, 1–51. https://doi.org/10.1080/02648725.2022.2082223
  • Nakao, M., Harada, M., Kodama, Y., Nakayama, T., Shibano, Y., & Amachi, T. (1994). Purification and characterization of a thermostable β-galactosidase with high transgalactosylation activity from saccharopolyspora rectivirgula. Applied Microbiology and Biotechnology, 40(5), 657–663. https://doi.org/10.1007/BF00173325
  • Nakhate, S., Gupta, R., Poddar, B., Singh, A., Tikariha, H., Pandit, P., Khardenavis, A., & Purohit, H. (2021). Influence of lignin level of raw material on anaerobic digestion process in reorganization and performance of microbial community. International Journal of Environmental Science and Technology, 19(3), 1–18. https://doi.org/10.1007/s13762-021-03141-4
  • Narisetty, V., Parhi, P., Mohan, B., Hazeena, S. H., Kumar, A. N., Gullón, B., Srivastava, A., Nair, L. M., Paul Alphy, M., Sindhu, R., Kumar, V., Castro, E., Kumar Awasthi, M., & Binod, P. (2022). Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. Bioresource Technology, 346, 126590. https://doi.org/10.1016/j.biortech.2021.126590
  • Nath, A., Mondal, S., Csighy, A., Molnár, M., Pásztorné-Huszár, K., Kovács, Z., Koris, A., & Vatai, G. (2017). Biochemical activities of lactose-derived prebiotics—a review. Acta Alimentaria, 46(4), 449–456. https://doi.org/10.1556/066.2017.46.4.7
  • Nguyen, T. H., Splechtna, B., Krasteva, S., Kneifel, W., Kulbe, K. D., Divne, C., & Haltrich, D. (2007). Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain lactobacillus acidophilus R22. FEMS microbiology letters, 269(1), 136–144. https://doi.org/10.1111/j.1574-6968.2006.00614.x
  • Nieto-Domínguez, M., de Eugenio, L. I., York-Durán, M. J., Rodríguez-Colinas, B., Plou, F. J., Chenoll, E., Pardo, E., Codoñer, F., & Martínez, M. (2017). Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chemistry, 232, 105–113. https://doi.org/10.1016/j.foodchem.2017.03.149
  • Nikbakht, E., Khalesi, S., Singh, I., Williams, L. T., West, N. P., & Colson, N. (2018). Effect of probiotics and synbiotics on blood glucose: A systematic review and meta-analysis of controlled trials. European Journal of Nutrition, 57(1), 95–106. https://doi.org/10.1007/s00394-016-1300-3
  • Niu, D., Qiao, J., Li, P., Tian, K., Liu, X., Singh, S., & Lu, F. (2017). Highly efficient enzymatic preparation of isomalto-oligosaccharides from starch using an enzyme cocktail. Electronic Journal of Biotechnology, 26, 46–51. https://doi.org/10.1016/j.ejbt.2016.12.002
  • Niyigaba, T., Liu, D., & Habimana, J. D. D. (2021). The extraction, functionalities and applications of plant polysaccharides in fermented foods: A review. Foods, 10(12), 3004. https://doi.org/10.3390/foods10123004
  • Nobre, C., Alves Filho, E., Fernandes, F. A., Brito, E. S., Rodrigues, S., Teixeira, J., & Rodrigues, L. R. (2018). Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT, 89, 58–64. https://doi.org/10.1016/j.lwt.2017.10.015
  • Nobre, C., Do Nascimento, A. K. C., Silva, S. P., Coelho, E., Coimbra, M. A., Cavalcanti, M. T. H., Teixeira, J. A., & Porto, A. L. F. (2019). Process development for the production of prebiotic fructo-oligosaccharides by penicillium citreonigrum. Bioresource Technology, 282, 464–474. https://doi.org/10.1016/j.biortech.2019.03.053
  • Nobre, C., Simões, L. S., Gonçalves, D. A., Berni, P., & Teixeira, J. A. (2022). Fructooligosaccharides production and the health benefits of prebiotics. In A. K. Rai (Ed.), Current developments in biotechnology and bioengineering (pp. 109–138). Elsevier. https://doi.org/10.1016/B978-0-12-823506-5.00002-3
  • Ojwach, J., Adetunji, A. I., Mutanda, T., & Mukaratirwa, S. (2022). Oligosaccharides’ production from coprophilous fungi: An emerging functional food with potential health-promoting properties. Biotechnology Reports, 33, e00702. https://doi.org/10.1016/j.btre.2022.e00702
  • Oniszczuk, A., Oniszczuk, T., Gancarz, M., & Szymańska, J. (2021). Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules, 26(4), 1172. https://doi.org/10.3390/molecules26041172
  • Palaniappan, A., Antony, U., Emmambux, M. N. (2021). Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends in Food Science & Technology, 111, 506–519. https://doi.org/10.1016/j.tifs.2021.02.047
  • Pan, M., & Barrangou, R. (2020). Combining omics technologies with CRISPR-based genome editing to study food microbes. Current Opinion in Biotechnology, 61, 198–208. https://doi.org/10.1016/j.copbio.2019.12.027
  • Pan, S., Ding, N., Ren, J., Gu, Z., Li, C., Hong, Y., Cheng, L., Holler, T. P., & Li, Z. (2017). Maltooligosaccharide-forming amylase: Characteristics, preparation, and application. Biotechnology Advances, 35(5), 619–632. https://doi.org/10.1016/j.biotechadv.2017.04.004
  • Panwar, D., Panesar, P. S., & Saini, A. (2022). Prebiotics and their Role in Functional Food Product Development. In P. S. Panesar & A. K. Anal (Eds.), Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications (pp. 233–271). Wiley. https://doi.org/10.1002/9781119702160.ch11
  • Paul, H. A., Collins, K. H., Nicolucci, A. C., Urbanski, S. J., Hart, D. A., Vogel, H. J., & Reimer, R. A. (2019). Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats. The FASEB Journal, 33(4), 5153–5167. https://doi.org/10.1096/fj.201801551R
  • Peng, M., Tabashsum, Z., Anderson, M., Truong, A., Houser, A. K., Padilla, J., Akmel, A., Bhatti, J., Rahaman, S. O., & Biswas, D. (2020). Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1908–1933. https://doi.org/10.1111/1541-4337.12565
  • Penksza, P., Juhász, R., Szabó-Nótin, B., & Sipos, L. (2020). Xylo-oligosaccharides as texture modifier compounds in aqueous media and in combination with food thickeners. Food Science & Nutrition, 8(7), 3023–3030. https://doi.org/10.1002/fsn3.1177
  • Pinelo, M., Jonsson, G., & Meyer, A. S. (2009). Membrane technology for purification of enzymatically produced oligosaccharides: Molecular and operational features affecting performance. Separation and Purification Technology, 70(1), 1–11. https://doi.org/10.1016/j.seppur.2009.08.010
  • Poddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology, 19(4), 1–28. https://doi.org/10.1007/s13762-021-03248-8
  • Poletto, P., Pereira, G. N., Monteiro, C. R., Pereira, M. A. F., Bordignon, S. E., & de Oliveira, D. (2020). Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochemistry, 91, 352–363. https://doi.org/10.1016/j.procbio.2020.01.005
  • Precup, G., Venus, J., Heiermann, M., Schneider, R., Pop, I. D., & Vodnar, D. C. (2022). Chemical and enzymatic synthesis of biobased xylo-oligosaccharides and fermentable sugars from wheat straw for food applications. Polymers, 14(7), 1336. https://doi.org/10.3390/polym14071336
  • Purohit, H. J., Kapley, A., Khardenavis, A., Qureshi, A., & Dafale, N. A. (2016). Insights in waste management bioprocesses using genomic tools. Advances in Applied Microbiology, 97, 121–170. https://doi.org/10.1016/bs.aambs.2016.09.002
  • Qin, Y., Zhang, Y., He, H., Zhu, J., Chen, G., Li, W., & Liang, Z. (2011). Screening and identification of a fungal β-glucosidase and the enzymatic synthesis of gentiooligosaccharide. Applied Biochemistry and Biotechnology, 163(8), 1012–1019. https://doi.org/10.1007/s12010-010-9105-y
  • Rabiu, B. A., Jay, A. J., Gibson, G. R., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases frombifidobacterium species. Applied and Environmental Microbiology, 67(6), 2526–2530. https://doi.org/10.1128/AEM.67.6.2526-2530.2001
  • Rahim, M. A., Saeed, F., Khalid, W., Hussain, M., & Anjum, F. M. (2021). Functional and nutraceutical properties of fructo-oligosaccharides derivatives: A review. International Journal of Food Properties, 24(1), 1588–1602. https://doi.org/10.1080/10942912.2021.1986520
  • Rajagopalan, G., & Krishnan, C. (2019). Functional oligosaccharides: Production and action. In N. K. Rathinam & R. K. Saini (Eds.), Next generation biomanufacturing technologies (pp. 155–180). ACS Publications. https://doi.org/10.1021/bk-2019-1329.ch008
  • Rajeev, R., Seethalakshmi, P., Jena, P. K., Prathiviraj, R., Kiran, G. S., & Selvin, J. (2021). Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Critical Reviews in Food Science and Nutrition, 62(27), 1–17. https://doi.org/10.1080/10408398.2021.1916429
  • Raman, M., Ambalam, P., & Doble, M. (2019). Probiotics, prebiotics, and fibers in nutritive and functional beverages. In A. M. Grumezescu & A. M. Holban (Eds.), Nutrients in beverages (pp. 315–367). Elsevier. https://doi.org/10.1016/B978-0-12-816842-4.00009-5
  • Rawi, M. H., Zaman, S. A., Pa’Ee, K. F., Leong, S. S., & Sarbini, S. R. (2020). Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology, 57(8), 2786–2799. https://doi.org/10.1007/s13197-020-04244-5
  • Research and Markets (2022). Prebiotics - Global Market Trajectory & Analytics. 1206755, Global Industry Analysts, Inc., Accessed:12/12/2022. https://www.researchandmarkets.com/reports/1206755/prebiotics_global_market_trajectory_and#product--toc
  • Rezvani, M., Mendoza, M., Koci, M. D., Daron, C., Levy, J., & Hassan, H. M. (2016). Draft genome sequences of lactobacillus animalis strain P38 and lactobacillus reuteri strain P43 isolated from chicken cecum. Genome Announcements, 4(6). https://doi.org/10.1128/genomeA.01229-16
  • Sabater, C., Fara, A., Palacios, J., Corzo, N., Requena, T., Montilla, A., & Zárate, G. (2019). Synthesis of prebiotic galactooligosaccharides from lactose and lactulose by dairy propionibacteria. Food microbiology, 77, 93–105. https://doi.org/10.1016/j.fm.2018.08.014
  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), 1–15. https://doi.org/10.1186/s40643-017-0187-z
  • Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605–616. https://doi.org/10.1038/s41575-019-0173-3
  • Santibáñez, L., Henríquez, C., Corro-Tejeda, R., Bernal, S., Armijo, B., & Salazar, O. (2021). Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydrate Polymers, 251, 117118. https://doi.org/10.1016/j.carbpol.2020.117118
  • Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344–371. https://doi.org/10.1080/10408398.2014.887055
  • Scorletti, E., Afolabi, P. R., Miles, E. A., Smith, D. E., Almehmadi, A., Alshathry, A., Childs, C. E., Del Fabbro, S., Bilson, J., Moyses, H. E., Clough, G. F., Sethi, J. K., Patel, J., Wright, M., Breen, D. J., Peebles, C., Darekar, A., Aspinall, R., Fowell, A. J. … Byrne, C. D. (2020). Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology, 158(6), 1597–1610. https://doi.org/10.1053/j.gastro.2020.01.031
  • Sebastián, O. C., Ariel, C. A. C., & Eduardo, O. A. C. (2019). Prebiotics in beverages: From health impact to preservation. In A. M. Grumezescu & A. M. Holban (Eds.), Preservatives and preservation approaches in beverages (pp. 339–373). Elsevier. https://doi.org/10.1016/B978-0-12-816685-7.00011-2
  • Shinde, V. K., & Vamkudoth, K. R. (2022). Maltooligosaccharide forming amylases and their applications in food and pharma industry. Journal of Food Science and Technology, 59, 3733–3744. https://doi.org/10.1007/s13197-021-05262-7
  • Shyam, S., Ramadas, A., & Chang, S. K. (2018). Isomaltulose: Recent evidence for health benefits. Journal of Functional Foods, 48, 173–178. https://doi.org/10.1016/j.jff.2018.07.002
  • Siciliano, R. A., Lippolis, R., & Mazzeo, M. F. (2019). Proteomics for the investigation of surface-exposed proteins in probiotics. Frontiers in Nutrition, 6, 52. https://doi.org/10.3389/fnut.2019.00052
  • Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Cercek, A., Smith, R. A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601
  • Singh, S. P., Jadaun, J. S., Narnoliya, L. K., & Pandey, A. (2017). Prebiotic oligosaccharides: Special focus on fructooligosaccharides, its biosynthesis and bioactivity. Applied Biochemistry and Biotechnology, 183(2), 613–635. https://doi.org/10.1007/s12010-017-2605-2
  • Singh, R. S., Singh, R. P., & Kennedy, J. F. (2016). Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. International journal of biological macromolecules, 85, 565–572. https://doi.org/10.1016/j.ijbiomac.2016.01.026
  • Singh, B. P., & Vij, S. (2018). α-galactosidase activity and oligosaccharides reduction pattern of indigenous lactobacilli during fermentation of soy milk. Food Bioscience, 22, 32–37. https://doi.org/10.1016/j.fbio.2018.01.002
  • Slawinska, A., Plowiec, A., Siwek, M., Jaroszewski, M., Bednarczyk, M., & Wilson, B. A. (2016). Long-term transcriptomic effects of prebiotics and synbiotics delivered in ovo in broiler chickens. Plos One, 11(12), e0168899. https://doi.org/10.1371/journal.pone.0168899
  • Somero, G. N. (2020). The cellular stress response and temperature: Function, regulation, and evolution. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(6), 379–397. https://doi.org/10.1002/jez.2344
  • Song, Y., Zhang, F., & Linhardt, R. J. (2021). Analysis of the glycosaminoglycan chains of proteoglycans. Journal of Histochemistry & Cytochemistry, 69(2), 121–135. https://doi.org/10.1369/0022155420937154
  • Sorndech, W., Nakorn, K. N., Tongta, S., & Blennow, A. (2018). Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications. Lwt, 95, 135–142. https://doi.org/10.1016/j.lwt.2018.04.098
  • Šoštarić, N., van Noort, V. J., & Dunbrack, R. L. (2021). Molecular dynamics shows complex interplay and long-range effects of post-translational modifications in yeast protein interactions. PLoS Computational Biology, 17(5), e1008988. https://doi.org/10.1371/journal.pcbi.1008988
  • Sun, M. Z., Zheng, H. C., Meng, L. C., Sun, J. S., Song, H., Bao, Y. J., Pei, H. S., Yan, Z., Zhang, X. Q., Zhang, J. S., Liu, Y. H., & Lu, F. P. (2015). Direct cloning, expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob. Biotechnology Letters, 37(9), 1877–1886. https://doi.org/10.1007/s10529-015-1857-6
  • Swanson, K., De Vos, W., Martens, E., Gilbert, J., Menon, R., Soto-Vaca, A., Hautvast, J., Meyer, P., Borewicz, K., Vaughan, E., & Slavin, J. L. (2020). Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: A review. Beneficial microbes, 11(2), 101–129. https://doi.org/10.3920/BM2019.0082
  • Tamanna, N., & Mahmood, N. (2015). Food processing and maillard reaction products: Effect on human health and nutrition. International Journal of Food Science, 2015, 1–6. https://doi.org/10.1155/2015/526762
  • Tanabe, K., Nakamura, S., Moriyama-Hashiguchi, M., Kitajima, M., Ejima, H., Imori, C., & Oku, T. (2019). Dietary fructooligosaccharide and glucomannan alter gut microbiota and improve bone metabolism in senescence-accelerated mouse. Journal of Agricultural and Food Chemistry, 67(3), 867–874. https://doi.org/10.1021/acs.jafc.8b05164
  • Tang, C. D., Shi, H. L., Tang, Q. H., Zhou, J. S., Yao, L. G., Jiao, Z. J., & Kan, Y. C. (2016). Genome mining and motif truncation of glycoside hydrolase family 5 endo-β-1, 4-mannanase encoded by aspergillus oryzae RIB40 for potential konjac flour hydrolysis or feed additive. Enzyme and Microbial Technology, 93-94, 99–104. https://doi.org/10.1016/j.enzmictec.2016.08.003
  • Thanikachalam, K., & Khan, G. (2019). Colorectal cancer and nutrition. Nutrients, 11(1), 164. https://doi.org/10.3390/nu11010164
  • Tilg, H., Adolph, T. E., Gerner, R. R., & Moschen, A. R. (2018). The intestinal microbiota in colorectal cancer. Cancer cell, 33(6), 954–964. https://doi.org/10.1016/j.ccell.2018.03.004
  • Torres, D. P., Gonçalves, M. D. P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.x
  • Tsai, Y. L., Lin, T. L., Chang, C. J., Wu, T. R., Lai, W. F., Lu, C. C., & Lai, H. C. (2019). Probiotics, prebiotics and amelioration of diseases. Journal of Biomedical Science, 26(1), 1–8. https://doi.org/10.1186/s12929-018-0493-6
  • The United States National Library of Medicine at the National Institutes of Health. (2022, May 02). ClinicalTrials. https://ClinicalTrials.gov
  • Vallejo, D. D., Rojas Ramirez, C., Parson, K. F., Han, Y., Gadkari, V. V., & Ruotolo, B. T. (2022). Mass spectrometry methods for measuring protein stability. Chemical Reviews, 122(8), 7690–7719. https://doi.org/10.1021/acs.chemrev.1c00857
  • Van Wyk, N., Trollope, K. M., Steenkamp, E. T., Wingfield, B. D., & Volschenk, H. (2013). Identification of the gene for β-fructofuranosidase from ceratocystis moniliformis CMW 10134 and characterization of the enzyme expressed in saccharomyces cerevisiae. BMC Biotechnology, 13(1), 1–11. https://doi.org/10.1186/1472-6750-13-100
  • Vargas-Albores, F., Martínez-Córdova, L. R., Martínez-Porchas, M., Calderón, K., & Lago-Lestón, A. (2019). Functional metagenomics: A tool to gain knowledge for agronomic and veterinary sciences. Biotechnology & Genetic Engineering Reviews, 35(1), 69–91. https://doi.org/10.1080/02648725.2018.1513230
  • Varghese, V. K., Poddar, B. J., Shah, M. P., Purohit, H. J., & Khardenavis, A. A. (2022). A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. The Science of the Total Environment, 815, 152500. https://doi.org/10.1016/j.scitotenv.2021.152500
  • Varzakas, T., Kandylis, P., Dimitrellou, D., Salamoura, C., Zakynthinos, G., & Proestos, C. (2018). Innovative and fortified food: Probiotics, prebiotics, GMOs, and superfood. In M. E. Ali & N. N. A. Nizar (Eds.), Preparation and processing of religious and cultural foods (pp. 67–129). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101892-7.00006-7
  • Veana, F., Flores-Gallegos, A. C., Gonzalez-Montemayor, A. M., Michel-Michel, M., Lopez-Lopez, L., Aguilar-Zarate, P., Ascacio-Valdés, J. A., & Rodríguez-Herrera, R. (2018). Invertase: An enzyme with importance in confectionery food industry. In M. Kuddus (Ed.), Enzymes in food technology (pp. 187–212). Springer. https://doi.org/10.1007/978-981-13-1933-4_10
  • Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology & Biotechnology, 32(12), 1–20. https://doi.org/10.1007/s11274-016-2159-4
  • Vera, C., Illanes, A., & Guerrero, C. (2021). Enzymatic production of prebiotic oligosaccharides. Current Opinion in Food Science, 37, 160–170. https://doi.org/10.1016/j.cofs.2020.10.013
  • Vijayasarathy, S., Gayathri, P., & Suneetha, V. (2021). Fermented foods and their abating role in gastric ulcers. Journal of the American Nutrition Association, 41(8), 1–5. https://doi.org/10.1080/07315724.2021.1962768
  • Vinayak, A., Mudgal, G., Sharma, S., & Singh, G. B. (2021). Prebiotics for probiotics. In G. Goel & A. Kumar (Eds.), Advances in probiotics for sustainable food and medicine (pp. 63–82). Springer. https://doi.org/10.1007/978-981-15-6795-7_4
  • Vodnar, D. C., Călinoiu, L. F., Mitrea, L., Precup, G., Bindea, M., Păcurar, A. M., Szabo, K., & Ştefănescu, B. E. (2019). A new generation of probiotic functional beverages using bioactive compounds from agro-industrial waste. In A. M. Grumezescu & A. M Holban (Eds.), Functional and medicinal beverages (pp. 483–528). Elsevier. https://doi.org/10.1016/B978-0-12-816397-9.00015-7
  • Wang, Z., Tauzin, A. S., Laville, E., & Potocki-Veronese, G. (2022). Identification of glycoside transporters from the human gut microbiome. Frontiers in Microbiology, 13, 816462. https://doi.org/10.3389/fmicb.2022.816462
  • Wardman, J. F., Bains, R. K., Rahfeld, P., & Withers, S. G. (2022). Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nature reviews Microbiology, 20(9), 1–15. https://doi.org/10.1038/s41579-022-00712-1
  • Whisner, C. M., & Castillo, L. F. (2018). Prebiotics, bone and mineral metabolism. Calcified tissue international, 102(4), 443–479. https://doi.org/10.1007/s00223-017-0339-3
  • Wichienchot, S., & Ishak, W. R. B. W. (2017). Prebiotics and dietary fibers from food processing by-products. In A. K. Anal (Ed.), Food Processing By-products and Their Utilization (pp. 137–174). Wiley. https://doi.org/10.1002/9781118432921.ch7
  • Wu, Y., Wan, J., Choe, U., Pham, Q., Schoene, N. W., He, Q., Li, B., Yu, L., & Wang, T. T. (2019). Interactions between food and gut microbiota: Impact on human health. Annual Review of Food Science and Technology, 10(1), 389–408. https://doi.org/10.1146/annurev-food-032818-121303
  • Xu, H., Li, S., Song, X., Li, Z., & Zhang, D. (2018). Exploration of the association between dietary fiber intake and depressive symptoms in adults. Nutrition, 54, 48–53. https://doi.org/10.1016/j.nut.2018.03.009
  • Yadav, M. K., Kumari, I., Singh, B., Sharma, K. K., & Tiwari, S. K. (2022). Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Applied Microbiology and Biotechnology, 106(2), 1–17. https://doi.org/10.1007/s00253-021-11646-8
  • Yang, Z. Y., Wu, D. T., Chen, C. W., Cheong, K. L., Deng, Y., Chen, L. X., Han, B. X., Chen, N. F., Zhao, J., & Li, S. P. (2016). Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Separation and Purification Technology, 171, 151–156. https://doi.org/10.1016/j.seppur.2016.06.051
  • Yoshida, K., Hirano, R., Sakai, Y., Choi, M., Sakanaka, M., Kurihara, S., Iino, H., Xiao, J. Z., Katayama, T., & Odamaki, T. (2021). Bifidobacterium response to lactulose ingestion in the gut relies on a solute-binding protein-dependent ABC transporter. Communications Biology, 4(1), 1–8. https://doi.org/10.1038/s42003-021-02072-7
  • Yousef, M., Kumar, A., & Bakir-Gungor, B. (2020). Application of biological domain knowledge based feature selection on gene expression data. Entropy, 23(1), 2. https://doi.org/10.3390/e23010002
  • Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B. A., & Arockiaraj, J. (2020). Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903–1927. https://doi.org/10.1111/raq.12416
  • Yu, L. M., Zhao, K. J., Wang, S. S., Wang, X., & Lu, B. (2018). Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome. World Journal of Gastroenterology, 24(8), 894. https://doi.org/10.3748/wjg.v24.i8.894
  • Zahid, H. F., Ranadheera, C. S., Fang, Z., & Ajlouni, S. (2021). Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients. Agriculture, 11(7), 584. https://doi.org/10.3390/agriculture11070584
  • Zerva, A., Limnaios, A., Kritikou, A. S., Thomaidis, N. S., Taoukis, P., & Topakas, E. (2021). A novel thermophile β-galactosidase from thermothielavioides terrestris producing galactooligosaccharides from acid whey. New Biotechnology, 63, 45–53. https://doi.org/10.1016/j.nbt.2021.03.002
  • Zhang, X., Li, L., Butcher, J., Stintzi, A., & Figeys, D. (2019). Advancing functional and translational microbiome research using meta-omics approaches. Microbiome, 7(1), 1–12. https://doi.org/10.1186/s40168-019-0767-6
  • Zhang, Y., Li, Y. F., Chi, Z., Liu, G. L., Jiang, H., Hu, Z., & Chi, Z. M. (2019). Inulinase hyperproduction by kluyveromyces marxianus through codon optimization, selection of the promoter, and high-cell-density fermentation for efficient inulin hydrolysis. Annals of Microbiology, 69(6), 647–657. https://doi.org/10.1007/s13213-019-01457-8
  • Zhang, A., Sun, L., Bai, Y., Yu, H., McArthur, J. B., Chen, X., & Atsumi, S. (2021). Microbial production of human milk oligosaccharide lactodifucotetraose. Metabolic Engineering, 66, 12–20. https://doi.org/10.1016/j.ymben.2021.03.014
  • Zhou, J., Liu, H., Du, G., Li, J., & Chen, J. (2012). Production of α-cyclodextrin glycosyltransferase in bacillus megaterium MS941 by systematic codon usage optimization. Journal of Agricultural and Food Chemistry, 60(41), 10285–10292. https://doi.org/10.1021/jf302819h
  • Zhou, J., Li, Z., Zhang, H., Wu, J., Ye, X., Dong, W., Jiang, M., Huang, Y., & Cui, Z. (2018). Novel maltogenic amylase CoMA from corallococcus sp. strain EGB catalyzes the conversion of maltooligosaccharides and soluble starch to maltose. Applied and Environmental Microbiology, 84(14), e00152. https://doi.org/10.1128/AEM.00152-18
  • Zierer, J., Jackson, M. A., Kastenmüller, G., Mangino, M., Long, T., Telenti, A., Mohney, R. P., Small, K. S., Bell, J. T., Steves, C. J., Valdes, A. M., Spector, T. D., & Menni, C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature Genetics, 50(6), 790–795. https://doi.org/10.1038/s41588-018-0135-7
  • Zmora, N., Suez, J., Elinav, E. (2019). You are what you eat: Diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 16(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.