348
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone

, , &
Received 26 Sep 2022, Accepted 19 Dec 2022, Published online: 03 Jan 2023

References

  • Ahmed, S., Chauhan, V. M., Ghaemmaghami, A. M., & Aylott, J. W. (2019). New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnology Letters, 41(1), 1–25. https://doi.org/10.1007/s10529-018-2611-7
  • ALADAĞ, S., & YAPAR, E. A. (2020). Tissue engineering bioreactors: Potential applications and scale up strategy. Universal Journal of Pharmaceutical Research. https://doi.org/10.22270/ujpr.v5i3.416
  • Baino, F., Caddeo, S., Novajra, G., & Vitale-Brovarone, C. (2016). Using porous bioceramic scaffolds to model healthy and osteoporotic bone. Journal of the European Ceramic Society, 36(9), 2175–2182. https://doi.org/10.1016/j.jeurceramsoc.2016.01.011
  • Bancroft, G. N., Sikavitsas, V. I., & Mikos, A. G. (2003). Technical note: Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue engineering, 9(3), 549–554. https://doi.org/10.1089/107632703322066723
  • Baranwal, A., Kumar, A., Priyadharshini, A., Oggu, G. S., Bhatnagar, I., Srivastava, A., & Chandra, P. (2018). Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. International Journal of Biological Macromolecules, 110, 110–123. https://doi.org/10.1016/j.ijbiomac.2018.01.006
  • Baumgartner, W., Welti, M., Hild, N., Hess, S. C., Stark, W. J., Bürgisser, G. M., Giovanoli, P., & Buschmann, J. (2015). Tissue mechanics of piled critical size biomimetic and biominerizable nanocomposites: Formation of bioreactor-induced stem cell gradients under perfusion and compression. Journal of the Mechanical Behavior of Biomedical Materials, 47, 124–134. https://doi.org/10.1016/j.jmbbm.2015.03.022
  • Bayir, E., Sahinler, M., Celtikoglu, M. M., & Sendemir, A. (2020). Bioreactors in tissue engineering: Mimicking the microenvironment. In Biomater. Organ Tissue Regen (pp. 709–752). Elsevier. https://doi.org/10.1016/B978-0-08-102906-0.00018-0
  • Bernhardt, A., Lode, A., Boxberger, S., Pompe, W., & Gelinsky, M. (2008). Mineralised collagen—an artificial, extracellular bone matrix—improves osteogenic differentiation of bone marrow stromal cells. Journal of Materials Science Materials in Medicine, 19(1), 269–275. https://doi.org/10.1007/s10856-006-0059-0
  • Bernhardt, A., Lode, A., Peters, F., & Gelinsky, M. (2011). Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels. Journal of Tissue Engineering and Regenerative Medicine, 5(6), 444–453. https://doi.org/10.1002/term.331
  • Bhaskar, B., Kumar, N., & Rao, S. (2018). ScienceDirect Improved osteogenic differentiation of umbilical cord blood MSCs using custom made perfusion bioreactor. Biomedical Journal, 41(5), 290–297. https://doi.org/10.1016/j.bj.2018.07.002
  • Bhaskar, B., Owen, R., Bahmaee, H., Rao, P. S., & Reilly, G. C. (2017). Design and assessment of a dynamic perfusion bioreactor for large bone tissue engineering scaffolds. Applied Biochemistry and Biotechnology, 185(2), 555–563. https://doi.org/10.1007/s12010-017-2671-5
  • Bhatnagar, I., Mahato, K., Ealla, K. K. R., Asthana, A., & Chandra, P. (2018). Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive aspergillosis. International Journal of Biological Macromolecules, 110, 449–456. https://doi.org/10.1016/j.ijbiomac.2017.12.084
  • Bilezikian, J. P., Martin, T. J., Clemens, T. L., & Rosen, C. J. (2020). Principles of Bone Biology. Elsevier. https://doi.org/10.1016/C2015-1-01622-2
  • Bilgili, F., Balci, H. I., Karaytug, K., Sariyilmaz, K., Atalar, A. C., Bozdag, E., Tuna, M., Bilgic, B., & Gurler, N. (2015). Can normal fracture healing be achieved when the implant is retained on the basis of infection? An experimental animal model. Clinical Orthopaedics and Related Research®, 473(10), 3190–3196. https://doi.org/10.1007/s11999-015-4331-9
  • Birmingham, E., Kreipke, T. C., Dolan, E. B., Coughlin, T. R., Owens, P., McNamara, L. M., Niebur, G. L., & McHugh, P. E. (2015). Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Annals of Biomedical Engineering, 43(4), 1036–1050. https://doi.org/10.1007/s10439-014-1135-0
  • Birmingham, E., Niebur, G. L., McNamara, L. M., & McHugh, P. E. (2016). An experimental and computational investigation of bone formation in mechanically loaded trabecular bone explants. Annals of Biomedical Engineering, 44(4), 1191–1203. https://doi.org/10.1007/s10439-015-1378-4
  • Bouet, G., Cruel, M., Laurent, C., Vico, L., Malaval, L., & Marchat, D. (2015). Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold. European Cells & Materials, 29, 250–267. https://doi.org/10.22203/eCM.v029a19
  • Burke, D. P., & Kelly, D. J. (2012). Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration : A mechanobiological model. Plos One, 7(7), e40737. https://doi.org/10.1371/journal.pone.0040737
  • Campsie, P., Childs, P. G., Robertson, S. N., Cameron, K., Hough, J., Salmeron-Sanchez, M., Tsimbouri, P. M., Vichare, P., Dalby, M. J., & Reid, S. (2019). Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Scientific reports, 9(1), 12944. https://doi.org/10.1038/s41598-019-49422-4
  • Chandra, P., & Prakash, R. (2020). Nanobiomaterial engineering: Concepts and their applications in biomedicine and diagnostics (pp. 1–294). https://doi.org/10.1007/978-981-32-9840-8
  • Chen, M., Zhou, M., Ye, Z., Zhou, Y., & Tan, W. -S. (2014). Ectopic osteogenesis of macroscopic tissue constructs assembled from human mesenchymal stem cell-laden microcarriers through in vitro perfusion culture. In E. Mezey (Ed.), PLoS One (Vol. 9, p. e109214). https://doi.org/10.1371/journal.pone.0109214
  • Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., & Vos, T. (2020). Global estimates of the need for rehabilitation based on the global burden of disease study 2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10267), 2006–2017. https://doi.org/10.1016/S0140-6736(20)32340-0
  • Correia, C., Bhumiratana, S., Sousa, R. A., Reis, R. L., & Vunjak-Novakovic, G. (2013). Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone. Tissue engineering Part A, 19(9–10), 1244–1254. https://doi.org/10.1089/ten.tea.2011.0701
  • Cowan, P. T., & Kahai, P. (2022). Anatomy. Bones.
  • Das, R., Roosloot, R., van Pel, M., Schepers, K., Driessen, M., Fibbe, W. E., de Bruijn, JD, Roelofs, H., & de Bruijn, J. D. (2019). Preparing for cell culture scale-out: Establishing parity of bioreactor- and flask-expanded mesenchymal stromal cell cultures. Journal of Translational Medicine, 17, 241. https://doi.org/10.1186/s12967-019-1989-x
  • Diederichs, S., Röker, S., Marten, D., Peterbauer, A., Scheper, T., van Griensven, M., & Kasper, C. (2009). Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z®RP platform. In Biotechnol. NA-NA. https://onlinelibrary.wiley.com/doi/10.1002/btpr.258
  • Divya, Mahapatra, S., Srivastava, V. R., & Chandra, P. (2021). Nanobioengineered sensing technologies based on cellulose matrices for detection of small molecules, macromolecules, and cells. Biosensors, 11(6), 168. https://doi.org/10.3390/bios11060168
  • Dua, R., Jones, H., & Noble, P. C. (2021). Bone reports designing and validation of an automated ex-vivo bioreactor system for long term culture of bone. Bone Reports, 14, 101074. https://doi.org/10.1016/j.bonr.2021.101074
  • Egger, D., Fischer, M., Clementi, A., Ribitsch, V., Hansmann, J., & Kasper, C. (2017). Development and characterization of a parallelizable perfusion bioreactor for 3D cell culture. Bioengineering, 4(4), 51. https://doi.org/10.3390/bioengineering4020051
  • Engel, N., Fechner, C., Voges, A., Ott, R., Stenzel, J., Siewert, S., Bergner, C., Khaimov, V., Liese, J., Schmitz, K. P., Krause, B. J., & Frerich, B. (2021). An optimized 3D-printed perfusion bioreactor for homogeneous cell seeding in bone substitute scaffolds for future chairside applications. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-01516-8
  • Felder, M. L., Simmons, A. D., Shambaugh, R. L., & Sikavitsas, VI. (2020). Effects of flow rate on mesenchymal stem cell oxygen consumption rates in 3D bone-tissue-engineered constructs cultured in perfusion bioreactor systems. Fluids, 5(1), 30. https://doi.org/10.3390/fluids5010030
  • Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A. M., Benkirane-Jessel, N., Bornert, F., & Offner, D. (2018). Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, 9, 204173141877681. https://doi.org/10.1177/2041731418776819
  • Filipowska, J., Reilly, G. C., & Osyczka, A. M. (2016). A single short session of media perfusion induces osteogenesis in hBmscs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnology and Bioengineering, 113(8), 1814–1824. https://doi.org/10.1002/bit.25937
  • Fragomeni, G., Iannelli, R., Falvo, G., Labate, D. U., Schwentenwein, M., & Catapano, G. (2019). Validation of a novel 3D fl ow model for the optimization of construct perfusion in radial- fl ow packed-bed bioreactors (rPbbs) for long-bone tissue engineering. New Biotechnology, 52, 110–120. https://doi.org/10.1016/j.nbt.2019.06.001
  • Freed, L. E., & Vunjak-Novakovic, G. (1997). Microgravity tissue engineering. In Vitro Cellular & Developmental Biology - Animal, 33(5), 381–385. https://doi.org/10.1007/s11626-997-0009-2
  • Fröhlich, M., Grayson, W. L., Marolt, D., Gimble, J. M., Kregar-Velikonja, N., & Vunjak-Novakovic, G. (2010). Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue engineering Part A, 16(1), 179–189. https://doi.org/10.1089/ten.tea.2009.0164
  • Frost, H. M. (1990). Skeletal structural adaptations to mechanical usage (satmu): 1. redefining Wolff’s law: The bone modeling problem. The Anatomical Record, 226(4), 403–413. https://doi.org/10.1002/ar.1092260402
  • Frost, H. M. (2004). A 2003 update of bone physiology and Wolff s law for clinicians. The Angle Orthodontist, 74(1), 3–15.
  • Fung, Y. C. 2001. 3. 0 Emergence and Evolution of a Shared Concept:18–24.
  • Gharibi, B., Cama, G., Capurro, M., Thompson, I., Deb, S., DiSilvio, L., & Hughes, F. J. (2013). Gene expression responses to mechanical stimulation of mesenchymal stem cells seeded on calcium phosphate cement. Tissue engineering Part A, 19(21–22), 2426–2438. https://doi.org/10.1089/ten.tea.2012.0623
  • Giannoudis, P. V., Einhorn, T. A., & Marsh, D. (2007). Fracture healing: The diamond concept. Injury, 38, S3–6. https://doi.org/10.1016/S0020-1383(08)70003-2
  • Goldstein, A. (2001). Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials, 22(11), 1279–1288. https://doi.org/10.1016/S0142-9612(00)00280-5
  • Grayson, W. L., Bhumiratana, S., Cannizzaro, C., Chao, P.H., Lennon, D. P., Caplan, A. I., & Vunjak-Novakovic, G. (2008). Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue engineering Part A, 14(11), 1809–1820. https://doi.org/10.1089/ten.tea.2007.0255
  • Grayson, W. L., Bunnell, B. A., Martin, E., Frazier, T., Hung, B. P., & Gimble, J. M. (2015). Stromal cells and stem cells in clinical bone regeneration. Nature Reviews Endocrinology, 11(3), 140–150. https://doi.org/10.1038/nrendo.2014.234
  • Grayson, W. L., Marolt, D., Bhumiratana, S., Fröhlich, M., Guo, E., & Vunjak-Novakovic, G. (2011). Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 108(5), 1–21. https://doi.org/10.1002/bit.23024
  • Guyot, Y., Luyten, F. P., Schrooten, J., Papantoniou, I., & Geris, L. (2015). A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnology and Bioengineering, 112(12), 2591–2600. https://doi.org/10.1002/bit.25672
  • Guyot, Y., Papantoniou, I., Luyten, F. P., & Geris, L. (2016). Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: A 3D computational model of a complete scaffold. Biomechanics and Modeling in Mechanobiology, 15(1), 169–180. https://doi.org/10.1007/s10237-015-0753-2
  • Hao, J., Zhang, Y., Jing, D., Shen, Y., Tang, G., Huang, S., & Zhao, Z. (2015). Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta biomaterialia, 20, 1–9. https://doi.org/10.1016/j.actbio.2015.04.008
  • Hoffmann, W., Feliciano, S., Martin, I., de Wild, M., & Wendt, D. (2015). Novel perfused compression bioreactor system as an in vitro model to investigate fracture healing. Frontiers in Bioengineering and Biotechnology, 3, 1–6. https://doi.org/10.3389/fbioe.2015.00010
  • Hollister, S. J. (2009). Scaffold engineering: A bridge to where? Biofabrication, 1(1), 012001. https://doi.org/10.1088/1758-5082/1/1/012001
  • Holtorf, H. L., Jansen, J. A., & Mikos, A. G. (2005). Flow perfusion culture induces the osteoblastic differentiation of marrow stromal cell-scaffold constructs in the absence of dexamethasone. Journal of Biomedical Materials Research Part A, 72A(3), 326–334. https://doi.org/10.1002/jbm.a.30251
  • Horner, C. B., Hirota, K., Liu, J., Maldonado, M., Hyle Park, B., & Nam, J. (2018). Magnitude‐dependent and inversely‐related osteogenic/chondrogenic differentiation of human mesenchymal stem cells under dynamic compressive strain. Journal of Tissue Engineering and Regenerative Medicine, 12(2). https://doi.org/10.1002/term.2332
  • Huang, C., Dai, J., Zhang, X. A., & City, O. (2016). Environmental physical cues determine the lineage specification of mesenchymal stem cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(6), 1261–1266. https://doi.org/10.1016/j.bbagen.2015.02.011
  • Huang, C., & Ogawa, R. (2010). Mechanotransduction in bone repair and regeneration. The FASEB Journal, 24(10), 3625–3632. https://doi.org/10.1096/fj.10-157370
  • Jain, Y., Sinha, S., Rastogi, A., Srivastava, P., Kumar, Y., & Vivek, V. (2020). Healing of gap nonunion using autologous cultured osteoblasts impregnated over three-dimensional bio-degradable nanomaterial scaffold: A pilot experiment on rabbits. Journal of Orthopedics, Traumatology and Rehabilitation, 12(1), 86. https://doi.org/10.4103/jotr.jotr_42_18
  • Janssen, F. W., Oostra, J., Van Oorschot, A., & Van Blitterswijk, C. A. (2006). A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: In vivo bone formation showing proof of concept. Biomaterials, 27(3), 315–323. https://doi.org/10.1016/j.biomaterials.2005.07.044
  • Jeske, R., Lewis, S., Tsai, A. C., Sanders, K., Liu, C., Yuan, X., & Li, Y. (2021). Agitation in a microcarrier-based spinner flask bioreactor modulates homeostasis of human mesenchymal stem cells. Biochemical Engineering Journal, 168, 107947. https://doi.org/10.1016/j.bej.2021.107947
  • Ji, J., Sun, W., Wang, W., Munyombwe, T., & Yang, X. B. (2014). The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model. Cell and Tissue Research, 358(1), 123–133. https://doi.org/10.1007/s00441-014-1907-8
  • Kang, K. S., Hong, J. M., Jeong, Y. H., Seol, Y. J., Yong, W. J., Rhie, J. W., & Cho, D. W. (2014). Combined effect of three types of biophysical stimuli for bone regeneration. Tissue engineering Part A, 20(11–12), 1767–1777. https://doi.org/10.1089/ten.tea.2013.0157
  • Kearney, E. M., Farrell, E., Prendergast, P. J., & Campbell, V. A. (2010). Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Annals of Biomedical Engineering, 38(5), 1767–1779. https://doi.org/10.1007/s10439-010-9979-4
  • Kedong, S., Wenfang, L., Yanxia, Z., Hong, W., Ze, Y., Mayasari, L., & Tianqing, L. (2014). Dynamic fabrication of tissue-engineered bone substitutes based on derived cancellous bone scaffold in a spinner flask bioreactor system. Applied Biochemistry and Biotechnology, 174(4), 1331–1343. https://doi.org/10.1007/s12010-014-1132-7
  • Keogh, M. B., Partap, S., Daly, J. S., & O’Brien, F. J. (2011). Three hours of perfusion culture prior to 28 days of static culture, enhances osteogenesis by human cells in a collagen GAG scaffold. Biotechnology and Bioengineering, 108(5), 1203–1210. https://doi.org/10.1002/bit.23032
  • Kim, H. J., Kim, U. -J., Leisk, G. G., Bayan, C., Georgakoudi, I., & Kaplan, D. L. (2007). Bone REgeneration on macroporous aqueous-derived silk 3-D scaffolds. Macromolecular bioscience, 7(5), 643–655. https://doi.org/10.1002/mabi.200700030
  • Koç Demir, A., Elçin, A. E., & Elçin, Y. M. (2018). Osteogenic differentiation of encapsulated rat mesenchymal stem cells inside a rotating microgravity bioreactor: In vitro and in vivo evaluation. Cytotechnology, 70(5), 1375–1388. https://doi.org/10.1007/s10616-018-0230-8
  • Konopnicki, S., Sharaf, B., Resnick, C., Patenaude, A., Pogal-Sussman, T., Hwang, K. -G., Abukawa, H., & Troulis, M. J. (2015). Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: An in vivo pilot study in a porcine mandible model. Journal of Oral and Maxillofacial Surgery, 73(5), 1016.e1–1016.e11 https://linkinghub.elsevier.com/retrieve/pii/S0278239115000762.
  • Kumar, R., Divya, Mahapatra, S., Dubey, V. K., & Chandra, P. (2022). N-acetyl-d-glucosamine decorated nano-lipid-based carriers as theranostics module for targeted anti-cancer drug delivery. Materials Chemistry and Physics, 282, 125956. https://doi.org/10.1016/J.MATCHEMPHYS.2022.125956
  • Lanyon, L. E., & Rubin, C. T. (1984). Static vs dynamic loads as an influence on bone remodelling. Journal of Biomechanics, 17(12), 897–905. https://doi.org/10.1016/0021-9290(84)90003-4
  • Le Pape, F., Richard, G., Porchet, E., Sourice, S., Dubrana, F., Férec, C., Polard, V., Pace, R., Weiss, P., Zal, F., Delépine, P., & Leize, E. (2018). Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. Artificial Cells, Nanomedicine and Biotechnology, 46(1), 95–107. https://doi.org/10.1080/21691401.2017.1365724
  • Liedert, A., Kaspar, D., Augat, P., Ignatius, A., & Claes, L. (2005). Mechanobiology of bone tissue and bone cells. mechanosensitivity in cells and tissues. https://www.ncbi.nlm.nih.gov/books/NBK7494/.
  • Liu, B., Han, S., Modarres‐sadeghi, Y., & Lynch, M. E. (2021). Multiphysics simulation of a compression–perfusion combined bioreactor to predict the mechanical microenvironment during bone metastatic breast cancer loading experiments. Biotechnology and Bioengineering, 118(5), 1779–1792. https://doi.org/10.1002/bit.27692
  • Liu, L., Shao, L., Li, B., Zong, C., Li, J., Zheng, Q., Tong, X., Gao, C., & Wang, J. (2011). Extracellular signal-regulated kinase1/2 activated by fluid shear stress promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through novel signaling pathways. The International Journal of Biochemistry & Cell Biology, 43(11), 1591–1601. https://doi.org/10.1016/j.biocel.2011.07.008
  • Liu, L., Zong, C., Li, B., Shen, D., Tang, Z., Chen, J., Zheng, Q., Tong, X., Gao, C., & Wang, J. (2014). The interaction between β 1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. Journal of Tissue Engineering and Regenerative Medicine, 8(2), 85–96. https://doi.org/10.1002/term.1498
  • Lopes, D., Martins-Cruz, C., Oliveira, M. B., & Mano, J. F. 2019. Europe PMC funders group bone physiology as inspiration for tissue regenerative therapies:240–275.
  • Lovecchio, J., Gargiulo, P., Vargas Luna, J. L., Giordano, E., & ÓE, S. (2019). A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates. Scientific Reports, 9(1), 16854. https://doi.org/10.1038/s41598-019-53319-7
  • Lv, Q., Deng, M., Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2013). Nano-ceramic composite scaffolds for bioreactor-based bone engineering. Clinical Orthopaedics & Related Research, 471(8), 2422–2433. https://doi.org/10.1007/s11999-013-2859-0
  • Ma, C., Du, T., Niu, X., & Fan, Y. (2022). Biomechanics and mechanobiology of the bone matrix. Bone Research, 10(1), 59. https://doi.org/10.1038/s41413-022-00223-y
  • Mahato, K., & Chandra, P. (2019). Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosensors & Bioelectronics, 128, 9–16. https://doi.org/10.1016/j.bios.2018.12.006
  • Mahato, K., Purohit, B., Kumar, A., & Chandra, P. (2020). Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-Dendroids and graphene oxide nanocomposite. Biosensors & Bioelectronics, 148, 111815. https://doi.org/10.1016/j.bios.2019.111815
  • Mallick, S. P., Beyene, Z., Suman, D. K., Madhual, A., Singh, B. N., & Srivastava, P. (2019). Strategies towards orthopaedic tissue engineered graft generation: Current scenario and application. Biotechnology and Bioprocess Engineering, 24(6), 854–869. https://doi.org/10.1007/s12257-019-0086-6
  • Mallick, S. P., Rastogi, A., Tripathi, S., & Srivastava, P. (2017). Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration. Bioprocess and Biosystems Engineering, 40(4), 601–610. https://doi.org/10.1007/s00449-016-1724-4
  • McKee, C., & Chaudhry, G. R. (2017). Advances and challenges in stem cell culture. Colloids Surfaces B Biointerfaces, 159, 62–77. https://doi.org/10.1016/j.colsurfb.2017.07.051
  • Mehrian, M., Lambrechts, T., Papantoniou, I., & Geris, L. (2020). Computational modeling of human mesenchymal stromal cell proliferation and extra-cellular matrix production in 3D porous scaffolds in a perfusion bioreactor: The effect of growth factors. Frontiers in Bioengineering and Biotechnology, 8, 1–12. https://doi.org/10.3389/fbioe.2020.00376/full
  • Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde Patil, V., Zichner, L., Kaplan, D., Langer, R., & Vunjak-Novakovic, G. (2004). Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Annals of Biomedical Engineering, 32(1), 112–122. https://doi.org/10.1023/B:ABME.0000007796.48329.b4
  • Melke, J., Zhao, F., Rietbergen, B., Ito, K., & Hofmann, S. (2018). Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation. European Cells & Materials, 36, 57–68. https://doi.org/10.22203/eCM.v036a05
  • Mitra, D., Whitehead, J., Yasui, O. W., & Leach, J. K. (2017). Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials, 146, 29–39. https://doi.org/10.1016/j.biomaterials.2017.08.044
  • Miyashita, S., NEMB, A., Murakami, M., Iohara, K., Yamamoto, T., Horibe, H., Kurita, K., Takano-Yamamoto, T., & Nakashima, M. (2014). Mechanical forces induce odontoblastic differentiation of mesenchymal stem cells on three-dimensional biomimetic scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 11(2), 434–446. https://doi.org/10.1016/j.trsl.2010.06.007
  • Moser, C., Bardsley, K., El Haj, A. J., Alini, M., Stoddart, M. J., & Bara, J. J. (2018). A PErfusion culture system for assessing bone marrow stromal cell differentiation on plga scaffolds for bone repair. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00161
  • Mullender, M., el Haj, A. J., Yang, Y., van Duin, M. A., Burger, E. H., & Klein-Nulend, J. (2004). Mechanotransduction of bone cellsin vitro: Mechanobiology of bone tissue. Medical & Biological Engineering & Computing, 42(1), 14–21. https://doi.org/10.1007/BF02351006
  • Nishi, M., Matsumoto, R., Dong, J., & Uemura, T. (2013). Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. Journal of Biomedical Materials Research Part A, 101A(2), 421–427. https://doi.org/10.1002/jbm.a.34340
  • Nokhbatolfoghahaei, H., Bohlouli, M., Adavi, K., Paknejad, Z., Rezai Rad, M., Khani, M. M., Salehi-Nik, N., & Khojasteh, A. (2020). Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 234(12), 1397–1408. https://doi.org/10.1177/0954411920944039
  • O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
  • Olivier, V., Hivart, P., Descamps, M., & Hardouin, P. (2007). In vitro culture of large bone substitutes in a new bioreactor: Importance of the flow direction. Biomedical materials, 2(3), 174–180. https://doi.org/10.1088/1748-6041/2/3/002
  • Panek, M., Antunović, M., Pribolšan, L., Ivković, A., Gotić, M., Vukasović, A., Caput Mihalić, K., Pušić, M., Jurkin, T., & Marijanović, I. (2019). Bone tissue engineering in a perfusion bioreactor using dexamethasone-loaded peptide hydrogel. Materials (Basel), 12(6), 919. https://doi.org/10.3390/ma12060919
  • Papantoniou, I., Guyot, Y., Sonnaert, M., Kerckhofs, G., Luyten, F. P., Geris, L., & Schrooten, J. (2014). Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes. Biotechnology and Bioengineering, 111(12), 2560–2570. https://doi.org/10.1002/bit.25303
  • Petri, M., Ufer, K., Toma, I., Becher, C., Liodakis, E., Brand, S., Haas, P., Liu, C., Richter, B., Haasper, C., von Lewinski, G., & Jagodzinski, M. (2012). Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surgery, Sports Traumatology, Arthroscopy, 20(2), 223–231. https://doi.org/10.1007/s00167-011-1600-3
  • PORTER, B., A, L. I. N., PEISTER, A., HUTMACHER, D., & GULDBERG, R. (2007). Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor. Biomaterials, 28(15), 2525–2533. https://doi.org/10.1016/j.biomaterials.2007.01.013
  • POUND, J., GREEN, D., ROACH, H., MANN, S., & OREFFO, R. (2007). An ex vivo model for chondrogenesis and osteogenesis☆. Biomaterials, 28(18), 2839–2849. https://doi.org/10.1016/j.biomaterials.2007.02.029
  • Ramírez-Rodríguez, G. B., Pereira, A. R., Herrmann, M., Hansmann, J., Delgado-López, J. M., Sprio, S., Tampieri, A., & Sandri, M. (2021). Biomimetic mineralization promotes viability and differentiation of human mesenchymal stem cells in a perfusion bioreactor. International Journal of Molecular Sciences, 22(3), 1447. https://doi.org/10.3390/ijms22031447
  • Rauh, J., Milan, F., Günther, K. -P., & Stiehler, M. (2011). Bioreactor systems for bone tissue engineering. Tissue Engineering Part B, Reviews, 17(4), 263–280. https://doi.org/10.1089/ten.teb.2010.0612
  • Ravichandran, A., Lim, J., Chong, M. S. K., Wen, F., Liu, Y., Pillay, Y. T., Chan, J. K. Y., & Teoh, S. -H. (2017). In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 105(8), 2366–2375. https://doi.org/10.1002/jbm.b.33772
  • Ravichandran, A., Wen, F., Lim, J., Chong, M. S. K., Chan, J. K. Y., & Teoh, S. H. (2018). Biomimetic fetal rotation bioreactor for engineering bone tissues—effect of cyclic strains on upregulation of osteogenic gene expression. Journal of Tissue Engineering and Regenerative Medicine, 12(4), e2039–2050. https://doi.org/10.1002/term.2635
  • Reznikov, N., Shahar, R., & Weiner, S. (2014). Bone hierarchical structure in three dimensions. Acta biomaterialia, 10(9), 3815–3826. https://doi.org/10.1016/j.actbio.2014.05.024
  • Rubin, C. T., & Lanyon, L. E. (1985). Regulation of bone mass by mechanical strain magnitude. Calcified tissue international, 37(4), 411–417. https://doi.org/10.1007/BF02553711
  • Saidova, A. A., & Vorobjev, I. A. (2020). Lineage commitment, signaling pathways, and the cytoskeleton systems in mesenchymal stem cells. Tissue Engineering Part B, Reviews, 26(1), 13–25. https://doi.org/10.1089/ten.teb.2019.0250
  • Sailon, A. M., Allori, A. C., Davidson, E. H., Reformat, D. D., Allen, R. J., & Warren, S. M. (2009). A novel flow-perfusion bioreactor supports 3D dynamic cell culture. Journal of Biomedicine & Biotechnology, 2009, 1–7. https://doi.org/10.1155/2009/873816
  • Sammi, A., Divya, Mahapatra, S., Kumar, R., & Chandra, P. (2021). Nano-bio-engineered silk matrix based devices for molecular bioanalysis. Biotechnology and Bioengineering. https://doi.org/10.1002/BIT.28021
  • Schädli, G. N., Vetsch, J. R., Baumann, R. P., de Leeuw, A. M., Wehrle, E., Rubert, M., & Müller, R. (2021). Time-lapsed imaging of nanocomposite scaffolds reveals increased bone formation in dynamic compression bioreactors. Communications Biology, 4(1), 110. https://doi.org/10.1038/s42003-020-01635-4
  • Schreivogel, S., Kuchibhotla, V., Knaus, P., Duda, G. N., & Petersen, A. (2019). Load‐induced osteogenic differentiation of mesenchymal stromal cells is caused by mechano‐regulated autocrine signaling. Journal of Tissue Engineering and Regenerative Medicine, 13(11), 1992–2008. https://doi.org/10.1002/term.2948
  • Schwarz, R. P., Goodwin, T. J., Wolf, D. A. (1992). Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. Journal of tissue culture methods, 14, 51–57. https://doi.org/10.1007/BF01404744
  • Seddiqi, H., Saatchi, A., Amoabediny, G., Helder, M. N., Abbasi Ravasjani, S., Safari Hajat Aghaei, M., Jin, J., Zandieh-Doulabi, B., & Klein-Nulend, J. (2020). Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Computers in Biology and Medicine, 124, 103826. https://doi.org/10.1016/j.compbiomed.2020.103826
  • Sego, T. J., Prideaux, M., Sterner, J., McCarthy, B. P., Li, P., Bonewald, L. F., Ekser, B., Tovar, A., & Jeshua Smith, L. (2020). Computational fluid dynamic analysis of bioprinted self-supporting perfused tissue models. Biotechnology and Bioengineering, 117(3), 798–815. https://doi.org/10.1002/bit.27238
  • Shi, F., Xiao, D., Zhang, C., Zhi, W., Liu, Y., & Weng, J. (2021). The effect of macropore size of hydroxyapatite scaffold on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture. Regenerative Biomaterials, 8(6), 1–12. https://doi.org/10.1093/rb/rbab050
  • Sikavitsas, V. I., Bancroft, G. N., & Mikos, A. G. (2002). Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Journal of Biomedical Materials Research, 62(1), 136–148. https://doi.org/10.1002/jbm.10150
  • Singh, B. N., Veeresh, V., Mallick, S. P., Jain, Y., Sinha, S., Rastogi, A., & Srivastava, P. (2019). Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 133, 817–830. https://doi.org/10.1016/j.ijbiomac.2019.04.107
  • Singh, B. N., Veeresh, V., Mallick, S. P., Sinha, S., Rastogi, A., & Srivastava, P. (2020). Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. International Journal of Biological Macromolecules, 153, 1–16. https://doi.org/10.1016/j.ijbiomac.2020.02.173
  • Sinlapabodin, S., Amornsudthiwat, P., Damrongsakkul, S., & Kanokpanont, S. (2016). An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor. Materials Science and Engineering: C, 58, 960–970. https://doi.org/10.1016/j.msec.2015.09.034
  • Song, K., Liu, T., Cui, Z., Li, X., & Ma, X. (2008). Three‐dimensional fabrication of engineered bone with human bio‐derived bone scaffolds in a rotating wall vessel bioreactor. Journal of Biomedical Materials Research Part A, 86A(2), 323–332. https://doi.org/10.1002/jbm.a.31624
  • Song, K., Wang, H., Zhang, B., Lim, M., Liu, Y., & Liu, T. (2013). Numerical simulation of fluid field and in vitro three-dimensional fabrication of tissue-engineered bones in a rotating bioreactor and in vivo implantation for repairing segmental bone defects. Cell Stress & Chaperones, 18(2), 193–201. https://doi.org/10.1007/s12192-012-0370-2
  • Spatz, J. M., Wein, M. N., Gooi, J. H., Qu, Y., Garr, J. L., Liu, S., Barry, K. J., Uda, Y., Lai, F., Dedic, C., Balcells-Camps, M., Kronenberg, H. M., Babij, P., & Pajevic, P. D. (2015). The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. The Journal of Biological Chemistry, 290(27), 16744–16758. https://doi.org/10.1074/jbc.M114.628313
  • Stiehler, M., Bu, C., Baatrup, A., Lind, M., Kassem, M., & Mygind, T. (2008). Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 89. https://doi.org/10.1002/jbm.a.31967
  • Tang, G., Liu, Z., Liu, Y., Yu, J., Wang, X., Tan, Z., & Ye, X. (2021). REcent trends in the development of bone regenerative biomaterialS. Frontiers in Cell and Developmental Biology, 9, 1–18. https://doi.org/10.3389/fcell.2021.665813/full
  • Tortora, Gerard J., Derrickson, Bryan H. (2011). Principles of anatomy & physiology, (13 Vol. pp. 1105). Wiley. ISBN:978-0470565100.
  • Varley, M. C., Markaki, A. E., & Brooks, R. A. (2017). Effect of rotation on scaffold motion and cell growth in rotating bioreactors. Tissue Engineering Part A, 23(11–12), 522–534. https://doi.org/10.1089/ten.tea.2016.0357
  • Verbruggen, S. W., & McNamara, L. M. (2018). Bone mechanobiology in health and disease. In Mechanobiology in Health and Disease (pp. 157–214). Elsevier. https://doi.org/10.1016/B978-0-12-812952-4.00006-4
  • Vetsch, J. R., Betts, D. C., Mu, R., & Hofmann, S. (2017). Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds : A combined experimental and computational approach. Plos One, 12(7), 1–17. https://doi.org/10.1371/journal.pone.0180781
  • Vetsch, J. R., Müller, R., & Hofmann, S. (2015). The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. Journal of Tissue Engineering and Regenerative Medicine, 9(8), 903–917. https://doi.org/10.1002/term.1733
  • Wang, Y., Uemura, T., Dong, J., Kojima, H., Tanaka, J., & Tateishi, T. (2003). Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials. Tissue engineering, 9(6), 1205–1214. https://doi.org/10.1089/10763270360728116
  • Wartella, K. A., & Wayne, J. S. (2009). Bioreactor for biaxial mechanical stimulation to tissue engineered constructs. Journal of Biomechanical Engineering, 131(4), 1–5. https://doi.org/10.1115/1.3049859
  • Web, Ref 1. Global bone graft and substitutes market to reach us$ 3.4 billion by 2024, stimulated by development of advanced technologies. 2019. IMARC Gr. https://www.imarcgroup.com/global-bone-graft-substitutes-market.
  • Web, Ref 2 Epidemiology | International Osteoporosis Foundation. 2021. https://www.osteoporosis.foundation/health-professionals/about-osteoporosis/epidemiology.
  • Wei, W., & Dai, H. (2021). Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioactive Materials, 6(12), 4830–4855. https://doi.org/10.1016/j.bioactmat.2021.05.011
  • Wolff, J. (1986). Concept of the law of bone remodelling. In Law Bone Remodel (p. 1). Springer. https://doi.org/10.1007/978-3-642-71031-5_1
  • World Health Organization. 2018. Global disease estimates, 2000-2016. http://www.who.int/healthinfo/global_burden_disease/GHE2016_DALY_Global_2000_2016_.xls?ua=1.
  • Wu, W., Le, A. V., Mendez, J. J., Chang, J., Niklason, L. E., & Steinbacher, D. M. (2015). Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture. Tissue Engineering Part A, 21(9–10), 1621–1632. https://doi.org/10.1089/ten.tea.2014.0115
  • Xing, Z., Xue, Y., Finne-Wistrand, A., Yang, Z. -Q., & Mustafa, K. (2013). Copolymer cell/scaffold constructs for bone tissue engineering: Co-culture of low ratios of human endothelial and osteoblast-like cells in a dynamic culture system. Journal of Biomedical Materials Research Part A, 101A(4), 1113–1120. https://doi.org/10.1002/jbm.a.34414
  • Yamada, S., Yassin, M. A., Schwarz, T., Hansmann, J., & Mustafa, K. (2021). Induction of osteogenic differentiation of bone marrow stromal cells on 3D polyester-based scaffolds solely by subphysiological fluidic stimulation in a laminar flow bioreactor. Journal of Tissue Engineering, 12, 204173142110193. https://doi.org/10.1177/20417314211019375
  • Yamada, S., Yassin, M. A., Schwarz, T., & Mustafa, K. (2022). Optimization and validation of a custom-designed perfusion bioreactor for bone tissue engineering. Frontiers in Bioengineering and Biotechnology, 10, 1–19. https://doi.org/10.3389/fbioe.2022.811942
  • Yeatts, A. B., Both, S. K., Yang, W., Alghamdi, H. S., Yang, F., Fisher, J. P., & Jansen, J. A. (2014). In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds. Tissue engineering Part A, 20(1–2), 139–146. https://doi.org/10.1089/ten.tea.2013.0168
  • Yeatts, A. B., & Fisher, J. P. (2011). Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone, 48(2), 171–181. https://doi.org/10.1016/j.bone.2010.09.138
  • Yeatts, A. B., Geibel, E. M., Fears, F. F., & Fisher, J. P. (2012). Human mesenchymal stem cell position within scaffolds influences cell fate during dynamic culture. Biotechnology and Bioengineering, 109(9), 2381–2391. https://doi.org/10.1002/bit.24497
  • Yong, K. W., Choi, J. R., Choi, J. Y., & Cowie, A. C. (2020). Recent advances in mechanically loaded human mesenchymal stem cells for bone tissue engineering. International Journal of Molecular Sciences, 21(16), 5816. https://doi.org/10.3390/ijms21165816
  • Yourek, G., McCormick, S. M., Mao, J. J., & Reilly, G. C. (2010). Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regenerative medicine, 5(5), 713–724. https://doi.org/10.2217/rme.10.60
  • Yu, X., Botchwey, E. A., Levine, E. M., Pollack, S. R., & Laurencin, C. T. (2004). Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proceedings of the National Academy of Sciences, 101(31), 11203–11208. https://doi.org/10.1073/pnas.0402532101
  • Zhao, F., Lacroix, D., Ito, K., van Rietbergen, B., & Hofmann, S. (2020). Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization. Bone Reports, 12, 100265. https://doi.org/10.1016/j.bonr.2020.100265
  • Zhao, F., van Rietbergen, B., Ito, K., & Hofmann, S. (2018). Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro. Journal of Biomechanics, 79, 232–237. https://doi.org/10.1016/j.jbiomech.2018.08.004
  • Zhu, G., Zhang, T., Chen, M., Yao, K., Huang, X., Zhang, B., Li, Y., Liu, J., Wang, Y., & Zhao, Z. (2021). Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioactive Materials, 6(11), 4110–4140. https://doi.org/10.1016/j.bioactmat.2021.03.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.