424
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Application of antimicrobial peptides as next-generation therapeutics in the biomedical world

, & ORCID Icon
Received 05 Nov 2022, Accepted 30 Mar 2023, Published online: 10 Apr 2023

References

  • Abedinzadeh, M., Gaeini, M., & Sardari, S. (2015). Natural antimicrobial peptides against Mycobacterium tuberculosis. The Journal of Antimicrobial Chemotherapy, 70(5), 1285–1289. https://doi.org/10.1093/jac/dku570
  • Acedo, J. Z., Chiorean, S., Vederas, J. C., & van Belkum, M. J. (2018). The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiology, 42(6), 805–828. https://doi.org/10.1093/femsre/fuy033
  • Aghamiri, S., Zandsalimi, F., Raee, P., Abdollahifar, M. A., Tan, S. C., Low, T. Y., Najafi, S., Ashrafizadeh, M., Zarrabi, A., Ghanbarian, H., & Bandehpour, M. (2021, Sep). Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 171, 105777. https://doi.org/10.1016/j.phrs.2021.105777
  • Ali, W., Elsahn, A., Ting, D. S. J., Dua, H. S., & Mohammed, I. (2022). Host defence peptides: A potent alternative to combat antimicrobial resistance in the era of the COVID-19 pandemic. Antibiotics (Basel), 11(4), 475. https://doi.org/10.3390/antibiotics11040475
  • Alonso, S., Pethe, K., Russell, D. G., & Purdy, G. E. (2007). Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 6031–6036. https://doi.org/10.1073/pnas.0700036104
  • Al Tall, Y., Abualhaijaa, A., Alsaggar, M., Almaaytah, A., Masadeh, M., & Alzoubi, K. H. (2019). Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infection and Drug Resistance, 12, 1035–1045. https://doi.org/10.2147/IDR.S199473
  • Ansari, J. M., Abraham, N. M., Massaro, J., Murphy, K., Smith-Carpenter, J., & Fikrig, E. (2017). Anti-biofilm activity of a self-aggregating peptide against Streptococcus mutans. Frontiers in Microbiology, 8, 488. https://doi.org/10.3389/fmicb.2017.00488
  • Arranz-Trullén, J., Lu, L., Pulido, D., Bhakta, S., & Boix, E. (2017). Host antimicrobial peptides: the promise of new treatment strategies against tuberculosis. Frontiers in Immunology, 8, 1499. https://doi.org/10.3389/fimmu.2017.01499
  • Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals (Basel), 6(12), 1543–1575. https://doi.org/10.3390/ph6121543
  • Barreto-Santamaría, A., Patarroyo, M. E., & Curtidor, H. (2019). Designing and optimizing new antimicrobial peptides: All targets are not the same. Critical Reviews in Clinical Laborator, 56(6), 351–373. https://doi.org/10.1080/10408363.2019.1631249
  • Bechinger, B., & Gorr, S. U. (2017). Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research, 96(3), 254–260. https://doi.org/10.1177/0022034516679973
  • Bédard, F., & Biron, E. (2018). Recent progress in the chemical synthesis of class II and S-Glycosylated bacteriocins. Frontiers in Microbiology, 9, 1048. https://doi.org/10.3389/fmicb.2018.01048
  • Bennallack, P. R., & Griffitts, J. S. (2017). Elucidating and engineering thiopeptide biosynthesis. World Journal of Microbiology & Biotechnology, 33(6), 119. https://doi.org/10.1007/s11274-017-2283-9
  • Bin Hafeez, A., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: An update on classifications and databases. International Journal of Molecular Sciences, 22(21), 11691. https://doi.org/10.3390/ijms222111691
  • Blin, T., Purohit, V., Leprince, J., Jouenne, T., & Glinel, K. (2011). Bactericidal microparticles decorated by an antimicrobial peptide for the easy disinfection of sensitive aqueous solutions. Biomacromolecules, 12(4), 1259–1264. https://doi.org/10.1021/bm101547d
  • Boparai, J. K., & Sharma, P. K. (2020). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and Peptide Letters, 27(1), 4–16. https://doi.org/10.2174/18755305MTAwENDE80
  • Bowdish, D. M., Davidson, D. J., & Hancock, R. E. (2005). A re-evaluation of the role of host defence peptides in mammalian immunity. Current Protein & Peptide Science, 6(1), 35–51. https://doi.org/10.2174/1389203053027494
  • Brancatisano, F. L., Maisetta, G., DiLuca, M., Esin, S., Bottai, D., Bizzarri, R., Campa, M., & Batoni, G. (2014). Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling, 30(4), 435–446. https://doi.org/10.1080/08927014.2014.888062
  • Carratalá, J. V., Serna, N., Villaverde, A., Vázquez, E., & Ferrer-Miralles, N. (2020). Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnol, 15(44), 107603. https://doi.org/10.1016/j.biotechadv.2020.107603
  • Casciaro, B., Moros, M., Rivera-Fernández, S., Bellelli, A., de la Fuente, J. M., & Mangoni, M. L. (2017). Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomaterialia, 47, 170–181. https://doi.org/10.1016/j.actbio.2016.09.041
  • Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., & Burden of AMR Collaborative Group. (2019, Jan). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. The Lancet Infectious Diseases, 19(1), 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4
  • Chang, T. L., & Klotman, M. E. (2004). Defensins: Natural anti-HIV peptides. AIDS, 6(3), 161–168.
  • Chang, T. W., Wei, S. Y., Wang, S. H., Wei, H. M., Wang, Y. J., Wang, C. F., Chen, C., Liao, Y. D., & Massiah, M. (2017). Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4. PLoS One, 12(10), e0186442. https://doi.org/10.1371/journal.pone.0186442
  • Chauhan, S., Dhawan, D. K., Saini, A., & Preet, S. (2021). Antimicrobial peptides against colorectal cancer-a focused review. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 167, 105529. https://doi.org/10.1016/j.phrs.2021.105529
  • Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23–28. https://doi.org/10.1016/j.copbio.2017.07.011
  • Chung, P. Y., & Khanum, R. (2017). Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. Journal of Microbiology, Immunology and Infection, 50(4), 405–410. https://doi.org/10.1016/j.jmii.2016.12.005
  • Cools, T. L., Struyfs, C., Drijfhout, J. W., Kucharíková, S., Lobo Romero, C., Van Dijck, P., Ramada, M. H. S., Bloch, C., Cammue, B. P. A., & Thevissen, K. (2017). A linear 19-mer plant defensin-derived peptide acts synergistically with caspofungin against Candida Albicans biofilms. Frontiers in Microbiology, 8, 2051. https://doi.org/10.3389/fmicb.2017.02051
  • Costa, F., Teixeira, C., Gomes, P., & Martins, M. C. L. (2019). Clinical application of AMPs. Advances in Experimental Medicine and Biology, 1117, 281–298. https://doi.org/10.1007/978-981-13-3588-4_15
  • de la Fuente-Núñez, C., Korolik, V., Bains, M., Nguyen, U., Breidenstein, E. B., Horsman, S., Lewenza, S., Burrows, L., & Hancock, R. E. (2012). Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrobial Agents and Chemotherapy, 56(5), 2696–2704. https://doi.org/10.1128/AAC.00064-12
  • de la Fuente-Núñez, C., Reffuveille, F., Haney, E. F., Straus, S. K., Hancock, R. E., & Parsek, M. R. (2014). Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathogens, 10(5), e1004152. https://doi.org/10.1371/journal.ppat.1004152
  • de la Fuente-Núñez, C., Reffuveille, F., Mansour, S. C., Reckseidler-Zenteno, S. L., Hernández, D., Brackman, G., Coenye, T., & Hancock, R. E. (2015). D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chemistry & Biology, 22(2), 196–205. https://doi.org/10.1016/j.chembiol.2015.01.002
  • de la Lastra Jm, P., Anand, U., González-Acosta, S., López, M. R., Dey, A., Bontempi, E., & Morales Dela Nuez, A. (2022). Antimicrobial resistance in the COVID-19 landscape: Is there an opportunity for anti-infective antibodies and antimicrobial peptides? Frontiers in Immunology, 13, 921483. https://doi.org/10.3389/fimmu.2022.921483
  • Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek, 69(2), 193–202. https://doi.org/10.1007/BF00399424
  • Dijksteel, G. S., Ulrich, M. M. W., Middelkoop, E., & Boekema, B. K. H. L. (2021). Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Frontiers in Microbiology, 12, 616979. https://doi.org/10.3389/fmicb.2021.616979
  • Di, Y. P., Lin, Q., Chen, C., Montelaro, R. C., Doi, Y., & Deslouches, B. (2020). Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Science Advances, 6(18), eaay6817. https://doi.org/10.1126/sciadv.aay6817
  • Dischinger, J., Basi Chipalu, S., & Bierbaum, G. (2014). Lantibiotics: Promising candidates for future applications in health care. International Journal of Medical Microbiology, 304(1), 51–62. https://doi.org/10.1016/j.ijmm.2013.09.003
  • Dlozi, P. N., Gladchuk, A., Crutchley, R. D., Keuler, N., Coetzee, R., & Dube, A. (2022). Cathelicidins and defensins antimicrobial host defense peptides in the treatment of TB and HIV: Pharmacogenomic and nanomedicine approaches towards improved therapeutic outcomes. Biomedicine and Pharmacotherapy, 151, 113189. https://doi.org/10.1016/j.biopha.2022.113189
  • Dong, N., Li, X. R., Xu, X. Y., Lv, Y. F., Li, Z. Y., Shan, A. S., & Wang, J. L. (2018). Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides. Amino Acids, 50(3–4), 453–468. https://doi.org/10.1007/s00726-017-2531-1
  • Ebenhan, T., Gheysens, O., Kruger, H. G., Zeevaart, J. R., & Sathekge, M. M. (2014). Antimicrobial peptides: Their role as infection-selective tracers for molecular imaging. BioMed Research International, 2014, 867381. https://doi.org/10.1155/2014/867381
  • Egan, K., Ross, R. P., Hill, C., & Walker, D. (2017). Bacteriocins antibiotics in the age of the microbiome. Emerging Topics in Life Sciences, 1(1), 55–63. https://doi.org/10.1042/ETLS20160015
  • Egorov, N. S., & Baranova, I. P. (1999). Bakteriotsiny. Obrazovanie, svoĭstva, primenenie [Bacteriocins. Production, properties, application. Antibiot Khimioter, 44(6), 33–40.
  • Essig, A., Hofmann, D., Münch, D., Gayathri, S., Künzler, M., Kallio, P. T., Sahl, H. G., Wider, G., Schneider, T., & Aebi, M. (2014). Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. The Journal of Biological Chemistry, 289(50), 34953–34964. https://doi.org/10.1074/jbc.M114.599878
  • Falagas, M. E., & Kasiakou, S. K. (2006). Toxicity of polymyxins: Asystematic review of the evidence from old and recentstudies. Critical Care, 10(1), R27. https://doi.org/10.1186/cc3995
  • Foss, M. H., Powers, K. M., & Purdy, G. E. (2012). Structural and functional characterization of mycobactericidal ubiquitin-derived peptides in model and bacterial membranes. Biochemistry, 51(49), 9922–9929. https://doi.org/10.1021/bi301426j
  • Garcia-Gutierrez, E., O’connor, P. M., Colquhoun, I. J., Vior, N. M., Rodríguez, J. M., Mayer, M. J., Cotter, P. D., & Narbad, A. (2020). Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain isolated from human milk. Applied Microbiology and Biotechnology, 104(9), 3869–3884. https://doi.org/10.1007/s00253-020-10493-3
  • Ge, J., Kang, J., & Ping, W. (2019). Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria. Journal of Microbiology and Biotechnology, 29(9), 1341–1348. https://doi.org/10.4014/jmb.1905.05060
  • Ghosh, S. K., & Weinberg, A. (2021). Ramping Up Antimicrobial Peptides Against Severe Acute Respiratory Syndrome Coronavirus-2. Frontiers in Molecular Biosciences, 8, 620806. https://doi.org/10.3389/fmolb.2021.620806
  • Gomes, A., Teixeira, C., Ferraz, R., Prudêncio, C., & Gomes, P. (2017). Wound-healing peptides for treatment of chronic diabetic foot ulcers and other infected skin injuries. Molecules, 22(10), 1743. https://doi.org/10.3390/molecules22101743
  • Gordya, N., Yakovlev, A., Kruglikova, A., Tulin, D., Potolitsina, E., Suborova, T., Bordo, D., Rosano, C., & Chernysh, S. (2017). Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PLoS One, 12(3), e0173559. https://doi.org/10.1371/journal.pone.0173559
  • Gorr, S. U. (2012). Antimicrobial peptides in periodontal innate defense. Frontiers of Oral Biology, 15, 84–98. https://doi.org/10.1159/000329673
  • Goyal, C., Malik, R. K., & Pradhan, D. (2018). Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. Journal of Food Science and Technology, 55(9), 3683–3692. https://doi.org/10.1007/s13197-018-3298-4
  • Gut, I. M., Blanke, S. R., & van der Donk, W. A. (2011). Mechanism of inhibition of Bacillus anthracis spore out growth by the lantibiotic nisin. ACS Chemical Biology, 6(7), 744–752. https://doi.org/10.1021/cb1004178
  • Guzmán-Rodríguez, J. J., López-Gómez, R., Suárez-Rodríguez, L. M., Salgado-Garciglia, R., Rodríguez-Zapata, L. C., Ochoa-Zarzosa, A., & López-Meza, J. E. (2013). Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus. BioMed Research International, 2013, 986273. https://doi.org/10.1155/2013/986273
  • Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12), 1551–1557. https://doi.org/10.1038/nbt1267
  • Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., & Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology, 113(4), 723–736. https://doi.org/10.1111/j.1365-2672.2012.05338.x
  • Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779
  • Hwang, S. A., Kruzel, M. L., & Actor, J. K. (2015). CHO expressed recombinant human lactoferrin as an adjuvant for BCG. International Journal of Immunopathology and Pharmacology, 28(4), 452–468. https://doi.org/10.1177/0394632015599832
  • Isaacson, T., Soto, A., Iwamuro, S., Knoop, F. C., & Conlon, J. M. (2002). Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica. Peptides, 23(3), 419–425. https://doi.org/10.1016/s0196-9781(01)00634-9
  • Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3), 491–511. https://doi.org/10.1128/CMR.00056-05
  • Jiang, X., Qian, K., Liu, G., Sun, L., Zhou, G., Li, J., Fang, X., Ge, H., & Lv, Z. (2019). Design and activity study of a melittin-thanatin hybrid peptide. AMB Express, 9(1), 14. https://doi.org/10.1186/s13568-019-0739-z
  • Jia, F., Wang, J., Peng, J., Zhao, P., Kong, Z., Wang, K., Yan, W., & Wang, R. (2017). D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochimica et Biophysica Sinica, 49(10), 916–925. https://doi.org/10.1093/abbs/gmx091
  • Jin, Y., Yang, Y., Duan, W., Qu, X., & Wu, J. (2021). Synergistic and on-demand release of ag-amps loaded on porous silicon nanocarriers for antibacteria and wound healing. ACS Applied Materials & Interfaces, 13(14), 16127–16141. https://doi.org/10.1021/acsami.1c02161
  • Juturu, V., & Wu, J. C. (2018). Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances, 36(8), 2187–2200. https://doi.org/10.1016/j.biotechadv.2018.10.007
  • Kang, H. K., Seo, C. H., Luchian, T., & Park, Y. (2018). Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant pseudomonas aeruginosa infection. Antimicrobial agents and chemotherapy, 62(12). e01493–18. https://doi.org/10.1128/AAC.01493-18.
  • Khara, J. S., Priestman, M., Uhía, I., Hamilton, M. S., Krishnan, N., Wang, Y., Yang, Y. Y., Langford, P. R., Newton, S. M., Robertson, B. D., & Ee, P. L. (2016). Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. The Journal of Antimicrobial Chemotherapy, 71(8), 2181–2191. https://doi.org/10.1093/jac/dkw107
  • Khurshid, Z., Najeeb, S., Mali, M., Moin, S. F., Raza, S. Q., Zohaib, S., Sefat, F., & Zafar, M. S. (2017). Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharmaceutical Journal, 25(1), 25–31. https://doi.org/10.1016/j.jsps.2016.04.027
  • Khusro, A., Aarti, C., & Agastian, P. (2016). Anti-tubercular peptides: A quest of future therapeutic weapon to combat tuberculosis. Asian Pacific Journal of Tropical Medicine, 9(11), 1023–1034. https://doi.org/10.1016/j.apjtm.2016.09.005
  • Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2012). Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe, 25(2), 219–232. https://doi.org/10.1016/j.chom.2019.01.014
  • Kosikowska, P., & Lesner, A. (2016). Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003–2015). Expert Opinion on Therapeutic Patents, 26(6), 26,689–702. https://doi.org/10.1080/13543776.2016.1176149
  • Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1), 4. https://doi.org/10.3390/biom8010004
  • Kunda, N. K. (2020). Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discovery Today, 25(1), 238–247. https://doi.org/10.1016/j.drudis.2019.11.012
  • Kurpe, S. R., Grishin, S. Y., Surin, A. K., Panfilov, A. V., Slizen, M. V., Chowdhury, S. D., & Galzitskaya, O. V. (2020). Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2?. International Journal of Molecular Sciences, 21(24), 9552. https://doi.org/10.3390/ijms21249552
  • Lee, G., & Bae, H. (2016). Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules, 21(5), 616. https://doi.org/10.3390/molecules21050616
  • Leszczynska, K., Namiot, D., Byfield, F. J., Cruz, K., Zendzian-Piotrowska, M., Fein, D. E., Savage, P. B., Diamond, S., McCulloch, C. A., Janmey, P. A., & Bucki, R. (2013). Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. The Journal of Antimicrobial Chemotherapy, 68(3), 610–618. https://doi.org/10.1093/jac/dks434
  • Liu, S., Long, Q., Xu, Y., Wang, J., Xu, Z., Wang, L., Zhou, M., Wu, Y., Chen, T., & Shaw, C. (2017). Assessment of antimicrobial and wound healing effects of Brevinin-2Ta against the bacterium Klebsiella pneumoniae in dermally-wounded rats. Oncotarget, 8(67), 111369–111385. https://doi.org/10.18632/oncotarget.22797
  • Liu, Y., Wang, L., Zhou, X., Hu, S., Zhang, S., & Wu, H. (2011). Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. International Journal of Antimicrobial Agents, 37(1), 33–38. https://doi.org/10.1016/j.ijantimicag.2010.08.014
  • Li, Y., Xiang, Q., Zhang, Q., Huang, Y., & Su, Z. (2012). Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides, 37(2), 207–215. https://doi.org/10.1016/j.peptides.2012.07.001
  • Lopes, B. S., Hanafiah, A., Nachimuthu, R., Muthupandian, S., Md Nesran, Z. N., & Patil, S. (2022). The role of antimicrobial peptides as antimicrobial and antibiofilm agents in tackling the silent pandemic of antimicrobial resistance. Molecules, 27(9), 2995. https://doi.org/10.3390/molecules27092995
  • Luca, V., Stringaro, A., Colone, M., Pini, A., & Mangoni, M. L. (2013). Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cellular and Molecular Life Sciences : CMLS, 70(15), 2773–2786. https://doi.org/10.1007/s00018-013-1291-7
  • Luong, H. X., Thanh, T. T., & Tran, T. H. (2020). Antimicrobial peptides - Advances in development of therapeutic applications. Life Sciences, 260, 118407. https://doi.org/10.1016/j.lfs.2020.118407
  • Luo, Y., & Song, Y. (2021). Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. International Journal of Molecular Sciences, 22(21), 11401. https://doi.org/10.3390/ijms222111401
  • Lv, X., Du, J., Jie, Y., Zhang, B., Bai, F., Zhao, H., & Li, J. (2017). Purification and antibacterial mechanism of fish-borne bacteriocin and its application in shrimp (Penaeus vannamei) for inhibiting Vibrio parahaemolyticus. World Journal of Microbiology & Biotechnology, 33(8), 156. https://doi.org/10.1007/s11274-017-2320-8
  • Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, 194. https://doi.org/10.3389/fcimb.2016.00194
  • Mai, S., Mauger, M. T., Niu, L. N., Barnes, J. B., Kao, S., Bergeron, B. E., Ling, J. Q., & Tay, F. R. (2017). Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomaterialia, 49, 16–35. https://doi.org/10.1016/j.actbio.2016.11.026
  • Maiti, S., Patro, S., Purohit, S., Jain, S., Senapati, S., & Dey, N. (2014). Effective control of salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrobial Agents and Chemotherapy, 58(11), 6896–6903. https://doi.org/10.1128/aac.03628-14
  • Majewski, K., Kozłowska, E., Żelechowska, P., & Brzezińska-Błaszczyk, E. (2018). Serum concentrations of antimicrobial peptide cathelicidin LL-37 in patients with bacterial lung infections. Central-European Journal of Immunology, 43(4), 453–457. https://doi.org/10.5114/ceji.2018.81355
  • Makowski, M., Íc, S., Pais Do Amaral, C., Gonçalves, S., & Santos, N. C. (2019). Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics, 11(11), 588. https://doi.org/10.3390/pharmaceutics11110588
  • Mello, E. O., Ribeiro, S. F., Carvalho, A. O., Santos, I. S., Da Cunha, M., Santa-Catarina, C., & Gomes, V. M. (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Current Microbiology, 62(4), 1209–1217. https://doi.org/10.1007/s00284-010-9847-3
  • Méndez-Samperio, P. (2010). The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides, 31(9), 1791–1798. https://doi.org/10.1016/j.peptides.2010.06.016
  • Mohammadi-Barzelighi, H., Nasr-Esfahani, B., Bakhshi, B., Daraei, B., Moghim, S., & Fazeli, H. (2019). Analysis of antibacterial and antibiofilm activity of purified recombinant Azurin from Pseudomonas aeruginosa. Iranian Journal of Microbiology, 11(2), 166–176. https://doi.org/10.18502/ijm.v11i2.1083
  • Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255. https://doi.org/10.3390/molecules22081255
  • Moretta, A., Scieuzo, C., Petrone, A. M., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A., & Falabella, P. (2021). Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology, 11, 668632. https://doi.org/10.3389/fcimb.2021.668632
  • Mousavi Maleki, M. S., Rostamian, M., & Madanchi, H. (2021). Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Review of Anti-infective Therapy, 19(10), 1205–1217. https://doi.org/10.1080/14787210.2021.1912593
  • Mwangi, J., Hao, X., Lai, R., & Zhang, Z. Y. (2019). Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research, 40(6), 488–505. https://doi.org/10.24272/j.issn.2095-8137.2019.062
  • Nagao, J., Morinaga, Y., Islam, M. R., Asaduzzaman, S. M., Aso, Y., Nakayama, J., & Sonomoto, K. (2009). Mapping and identification of the region and secondary structure required for the maturation of the nukacin ISK-1 prepeptide. Peptides, 30(8), 1412–1420. https://doi.org/10.1016/j.peptides.2009.05.021
  • Nishie, M., Nagao, J., & Sonomoto, K. (2012). Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Science, 17(1), 1–16. https://doi.org/10.4265/bio.17.1
  • Nowakowski, M., Ł, J., Wladyka, B., Dubin, G., Ejchart, A., & Mak, P. (2018). Spatial attributes of the four-helix bundle group of bacteriocins - The high-resolution structure of BacSp222 in solution. International Journal of Biological Macromolecules, 107(Pt B), 2715–2724. https://doi.org/10.1016/j.ijbiomac.2017.10.158
  • Oeemig, J. S., Lynggaard, C., Knudsen, D. H., Hansen, F. T., Nørgaard, K. D., Schneider, T., Vad, B. S., Sandvang, D. H., Nielsen, L. A., Neve, S., Kristensen, H. H., Sahl, H. G., Otzen, D. E., & Wimmer, R. (2012). Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. The Journal of Biological Chemistry, 287(50), 42361–42372. https://doi.org/10.1074/jbc.M112.382028
  • Okuda, K., Zendo, T., Sugimoto, S., Iwase, T., Tajima, A., Yamada, S., Sonomoto, K., & Mizunoe, Y. (2013). Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy, 57(11), 5572–5579. https://doi.org/10.1128/AAC.00888-13
  • Oliva, R., Chino, M., Pane, K., Pistorio, V., De Santis, A., Pizzo, E., D’errico, G., Pavone, V., Lombardi, A., Del Vecchio, P., Notomista, E., Nastri, F., & Petraccone, L. (2018). Exploring the role of unnatural amino acids in antimicrobial peptides. Scientific Reports, 8(1), 8888. https://doi.org/10.1038/s41598-018-27231-5
  • Olusanya, T. O. B., Haj Ahmad, R. R., Ibegbu, D. M., Smith, J. R., & Elkordy, A. A. (2018). Liposomal drug delivery systems and anticancer drugs. Molecules, 23(4), 907. https://doi.org/10.3390/molecules23040907
  • Ongey, E. L., Yassi, H., Pflugmacher, S., & Neubauer, P. (2017). Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnology Letters, 39(4), 473–482. https://doi.org/10.1007/s10529-016-2279-9
  • Overhage, J., Campisano, A., Bains, M., Torfs, E. C., Rehm, B. H., & Hancock, R. E. (2008). Human host defense peptide LL-37 prevents bacterial biofilm formation. Infection and Immunity, 76(9), 4176–4182. https://doi.org/10.1128/IAI.00318-08
  • Padhi, A., Sengupta, M., Sengupta, S., Roehm, K. H., & Sonawane, A. (2014). Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis (Edinb), 94(4), 363–373. https://doi.org/10.1016/j.tube.2014.03.011
  • Pahar, B., Madonna, S., Das, A., Albanesi, C., & Girolomoni, G. (2020). Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines(Basel), 8(3), 517. https://doi.org/10.3390/vaccines8030517
  • Paquette, D. W., Simpson, D. M., Friden, P., Braman, V., & Williams, R. C. (2002). Safety and clinical effects of topical histatin gels in humans with experimental gingivitis. Journal of Clinical Periodontology, 12(12), 1051–1058. https://doi.org/10.1034/j.1600-051x.2002.291201.x
  • Patocka, J., Nepovimova, E., Klimova, B., Wu, Q., & Kuca, K. (2019). Antimicrobial Peptides: Amphibian host defense peptides. Current Medicinal Chemistry, 26(32), 5924–5946. https://doi.org/10.2174/0929867325666180713125314
  • Pires, D., Marques, J., Pombo, J. P., Carmo, N., Bettencourt, P., Neyrolles, O., Lugo-Villarino, G., & Anes, E. (2016). Role of cathepsins in mycobacterium tuberculosis survival in human macrophages. Scientific Reports, 6(1), 32247. https://doi.org/10.1038/srep32247
  • Potrykus, K., & Cashel, M. (2008). p) ppGpp: still magical?. Annual Review of Microbiology, 62(1), 35–51. https://doi.org/10.1146/annurev.micro.62.081307.162903
  • Pulido, D., Prats-Ejarque, G., Villalba, C., Albacar, M., González-López, J. J., Torrent, M., Moussaoui, M., & Boix, E. (2016). A Novel RNase 3/ECP peptide for pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating activities. Antimicrobial Agents and Chemotherapy, 60(10), 6313–6325. https://doi.org/10.1128/AAC.00830-16
  • Qi, J., Gao, R., Liu, C., Shan, B., Gao, F., He, J., Yuan, M., Xie, H., Jin, S., & Ma, Y. (2019). Potential role of the antimicrobial peptide Tachyplesin III against multidrug-resistant P. aeruginosa and A. baumannii coinfection in an animal model. Infection and Drug Resistance, 12, 2865–2874. https://doi.org/10.2147/IDR.S217020
  • Quilès, F., Saadi, S., Francius, G., Bacharouche, J., & Humbert, F. (2016). In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. Biochimica et Biophysica Acta, 1858(1), 75–84. https://doi.org/10.1016/j.bbamem.2015.10.015
  • Rai, A., Pinto, S., Evangelista, M. B., Gil, H., Kallip, S., Ferreira, M. G., & Ferreira, L. (2016). High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomaterialia, 33, 64–77. https://doi.org/10.1016/j.actbio.2016.01.035
  • Rajchakit, U., & Sarojini, V. (2017). Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjugate Chemistry, 28(11), 2673–2686. https://doi.org/10.1021/acs.bioconjchem.7b00368
  • Rani, P., Kapoor, B., Gulati, M., Atanasov, A. G., Alzahrani, Q., & Gupta, R. (2022). Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opinion on Drug Discovery, 17(5), 473–487. https://doi.org/10.1080/17460441.2022.2050693
  • Reffuveille, F., de la Fuente-Núñez, C., Mansour, S., & Hancock, R. E. (2014). A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrobial Agents and Chemotherapy, 58(9), 5363–5371. https://doi.org/10.1128/AAC.03163-14
  • Reinhardt, A., & Neundorf, I. (2016). Design and Application of Antimicrobial Peptide Conjugates. International Journal of Molecular Sciences, 17(5), 701. https://doi.org/10.3390/ijms17050701
  • Rekha, R. S., Rao Muvva, S. S., Wan, M., Raqib, R., Bergman, P., Brighenti, S., Gudmundsson, G. H., & Agerberth, B. (2015). Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy, 11(9), 1688–1699. https://doi.org/10.1080/15548627.2015.1075110
  • Röhrl, J., Yang, D., Oppenheim, J. J., & Hehlgans, T. (2010). Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. Journal of Immunology (Baltimore, Md:1950), 184(12), 6688–6694. https://doi.org/10.4049/jimmunol.0903984
  • Sagisaka, A., Miyanoshita, A., Ishibashi, J., & Yamakawa, M. (2001). Purification, characterization and gene expression of a glycine and proline-rich antibacterial protein family from larvae of a beetle, Allomyrina dichotoma. Insect Molecular Biology, 10(4), 293–302. https://doi.org/10.1046/j.0962-1075.2001.00261.x
  • Salas, C. E., Badillo-Corona, J. A., Ramírez-Sotelo, G., & Oliver-Salvador, C. (2015). Biologically active and antimicrobial peptides from plants. BioMed Research International, 2015, 102129. https://doi.org/10.1155/2015/102129
  • Scocchi, M., Mardirossian, M., Runti, G., & Benincasa, M. (2016). Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria. Current Topics in Medicinal Chemistry, 16(1), 76–88. https://doi.org/10.2174/1568026615666150703121009
  • Shang, D., Liang, H., Wei, S., Yan, X., Yang, Q., & Sun, Y. (2014). Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Applied Microbiology and Biotechnology, 98(20), 8685–8695. https://doi.org/10.1007/s00253-014-5927-9
  • Sharma, B. R., Halami, P. M., & Tamang, J. P. (2021). Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods. Food Science and Biotechnology, 31(1), 1–16. https://doi.org/10.1007/s10068-021-00986-w
  • Sharma, A., Pohane, A. A., Bansal, S., Bajaj, A., Jain, V., & Srivastava, A. (2015). Cell penetrating synthetic antimicrobial peptides (SAMPs) exhibiting potent and selective killing of mycobacterium by targeting its DNA. Chemistry, 21(9), 3540–3545. https://doi.org/10.1002/chem.201404650
  • Shin, D. M., & Jo, E. K. (2011). Antimicrobial Peptides in Innate Immunity against Mycobacteria. Immune Network, 11(5), 245–252. https://doi.org/10.4110/in.2011.11.5.245
  • Sinha, R., & Shukla, P. (2019). Antimicrobial Peptides: Recent insights on biotechnological interventions and future perspectives. Protein and Peptide Letters, 26(2), 79–87. https://doi.org/10.2174/0929866525666181026160852
  • Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), fuaa039. https://doi.org/10.1093/femsre/fuaa039
  • Soltaninejad, H., Zare-Zardini, H., Ordooei, M., Ghelmani, Y., Ghadiri-Anari, A., Mojahedi, S., Hamidieh, A. A., & Jia, G. (2021). Antimicrobial Peptides from Amphibian Innate Immune System as Potent Antidiabetic Agents: A Literature Review and Bioinformatics Analysis. Journal of Diabetes Research, 2021, 2894722. https://doi.org/10.1155/2021/2894722
  • Stanley, S. A., Barczak, A. K., Silvis, M. R., Luo, S. S., Sogi, K., Vokes, M., Bray, M. A., Carpenter, A. E., Moore, C. B., Siddiqi, N., Rubin, E. J., Hung, D. T., & Ehrt, S. (2014). Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS pathogens, 10(2), e1003946. https://doi.org/10.1371/journal.ppat.1003946
  • Sugrue, I., O’connor, P. M., Hill, C., Stanton, C., Ross, R. P., & Comstock, L. E. (2020). Actinomyces Produces Defensin-Like Bacteriocins (Actifensins) with a Highly Degenerate Structure and Broad Antimicrobial Activity. Journal of bacteriology, 202(4), e00529–19. https://doi.org/10.1128/JB.00529-19.
  • Taveira, G. B., Mathias, L. S., da Motta, O. V., Machado, O. L., Rodrigues, R., Carvalho, A. O., Teixeira-Ferreira, A., Perales, J., Vasconcelos, I. M., & Gomes, V. M. (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers, 102(1), 30–39. https://doi.org/10.1002/bip.22351
  • Tornesello, A. L., Borrelli, A., Buonaguro, L., Buonaguro, F. M., & Tornesello, M. L. (2020). Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules, 25(12), 2850. https://doi.org/10.3390/molecules25122850
  • Tu, H., Fan, Y., Lv, X., Han, S., Zhou, X., & Zhang, L. (2016). Activity of Synthetic Antimicrobial Peptide GH12 against Oral Streptococci. Caries Research, 50(1), 48–61. https://doi.org/10.1159/000442898
  • Vlieghe, P., Lisowski, V., Martinez, J., & Khrestchatisky, M. (2010). Synthetic therapeutic peptides:scienceandmarket. Drug Discovery Today, 15(1–2), 40–56. https://doi.org/10.1016/j.drudis.2009.10.009
  • Walvekar, P., Gannimani, R., & Govender, T. (2019). Combination drug therapy via nanocarriers against infectious diseases. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 127, 121–141. https://doi.org/10.1016/j.ejps.2018.10.017
  • Wang, M., Huang, M., Zhang, J., Ma, Y., Li, S., & Wang, J. (2017). A novel secretion and online-cleavage strategy for production of cecropin A in Escherichia coli. Scientific Reports, 7(1), 7368. https://doi.org/10.1038/s41598-017-07411-5
  • Wang, H. Y., Lin, L., Tan, L. S., Yu, H. Y., Cheng, J. W., & Pan, Y. P. (2017). Molecular pathways underlying inhibitory effect of antimicrobial peptide Nal-P-113 on bacteria biofilms formation of Porphyromonas gingivalis W83 by DNA microarray. BMC Microbiology, 17(1), 37. https://doi.org/10.1186/s12866-017-0948-z
  • Wang, G., Mishra, B., Lau, K., Lushnikova, T., Golla, R., & Wang, X. (2015). Antimicrobial peptides in 2014. Pharmaceuticals (Basel), 8(1), 123–150. https://doi.org/10.3390/ph8010123
  • Wanmakok, M., Orrapin, S., Intorasoot, A., & Intorasoot, S. (2018). Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Gene, 671, 1–9. https://doi.org/10.1016/j.gene.2018.05.106
  • Wei, X., Wu, R., Zhang, L., Ahmad, B., Si, D., & Zhang, R. (2018). Expression, Purification, and Characterization of a Novel Hybrid Peptide with Potent Antibacterial Activity. Molecules, 23(6), 1491. https://doi.org/10.3390/molecules23061491
  • Wiebach, V., Mainz, A., Siegert, M. J., Jungmann, N. A., Lesquame, G., Tirat, S., Dreux-Zigha, A., Aszodi, J., Le Beller, D., & Süssmuth, R. D. (2018). The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nature Chemical Biology, 14(7), 652–654. https://doi.org/10.1038/s41589-018-0068-6
  • Wu, D., Gao, Y., Qi, Y., Chen, L., Ma, Y., & Li, Y. (2014). Peptide-based cancer therapy: opportunity and challenge. Cancer Letters, 351(1), 13–22. https://doi.org/10.1016/j.canlet.2014.05.002
  • Wu, Q., Patočka, J., & Kuča, K. (2018). Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel), 10(11), 461. https://doi.org/10.3390/toxins10110461
  • Yang, Z., He, S., Wu, H., Yin, T., Wang, L., & Shan, A. (2021, Aug 12). Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Frontiers in Microbiology, 12, 710199. https://doi.org/10.3389/fmicb.2021.710199
  • Yang, G., Wang, J., Lu, S., Chen, Z., Fan, S., Chen, D., Xue, H., Shi, W., & He, J. (2019). Short lipopeptides specifically inhibit the growth of Propionibacterium acnes with dual antibacterial and anti-inflammatory action. British Journal of Pharmacology, 176(11), 1603–1618. https://doi.org/10.1111/bph.14571
  • Yang, Y., Wu, D., Wang, C., Shan, A., Bi, C., Li, Y., & Gan, W. (2020). Hybridization with Insect Cecropin A (1-8) Improve the Stability and Selectivity of Naturally Occurring Peptides. International Journal of Molecular Sciences, 21(4), 1470. https://doi.org/10.3390/ijms21041470
  • Yang, X., & Yousef, A. E. (2018). Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World Journal of Microbiology & Biotechnology, 34(4), 57. https://doi.org/10.1007/s11274-018-2437-4
  • Yasir, M., Willcox, M. D. P., & Dutta, D. (2018). Action of Antimicrobial Peptides against Bacterial Biofilms. Materials (Basel), 11(12), 2468. https://doi.org/10.3390/ma11122468
  • Yazici, A., Ortucu, S., Taskin, M., & Marinelli, L. (2018). Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Current Topics in Medicinal Chemistry, 18(24), 2102–2107. https://doi.org/10.2174/1568026618666181112143351
  • Yeung, A. T., Gellatly, S. L., & Hancock, R. E. (2011). Multifunctional cationic hostdefencepeptidesandtheirclinicalapplications. Cellular and Molecular Life Sciences, 68(13), 2161–2176. https://doi.org/10.1007/s00018-011-0710-x
  • Yi, T., Huang, Y., & Chen, Y. (2015). Production of an antimicrobial peptide AN5-1 in Escherichia coli and its dual mechanisms against bacteria. Chemical Biology & Drug Design, 85(5), 598–607. https://doi.org/10.1111/cbdd.12449
  • Zhang, S. K., Song, J. W., Gong, F., Li, S. B., Chang, H. Y., Xie, H. M., Gao, H. W., Tan, Y. X., & Ji, S. P. (2016). Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Scientific Reports, 6(1), 27394. https://doi.org/10.1038/srep27394
  • Zhang, C., & Yang, M. (2020). The Role and Potential Application of Antimicrobial Peptides in Autoimmune Diseases. Frontiers in Immunology, 11, 859. https://doi.org/10.3389/fimmu.2020.00859
  • Zhang, C., & Yang, M. (2022, Mar). Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel), 11(3), 349. https://doi.org/10.3390/antibiotics11030349
  • Zhang, C., Yang, M., & Ericsson, A. C. (2019). Antimicrobial Peptides: Potential Application in Liver Cancer. Frontiers in Microbiology, 10, 1257. https://doi.org/10.3389/fmicb.2019.01257
  • Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 48. https://doi.org/10.1186/s40779-021-00343-2
  • Zhu, C., Tan, H., Cheng, T., Shen, H., Shao, J., Guo, Y., Shi, S., & Zhang, X. (2013). Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. The Journal of Surgical Research, 183(1), 204–213. https://doi.org/10.1016/j.jss.2012.11.048
  • Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics (Basel), 9(9), 553. https://doi.org/10.3390/antibiotics9090553
  • Zong, J., Cobb, S. L., & Cameron, N. R. (2017). Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomaterials Science, 5(5), 872–886. https://doi.org/10.1039/c7bm00006e
  • Zou, J., Jiang, H., Cheng, H., Fang, J., & Huang, G. (2018). Strategies for screening, purification and characterization of bacteriocins. International Journal of Biological Macromolecules, 117, 781–789. https://doi.org/10.1016/j.ijbiomac.2018.05.233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.