2,142
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Cellular therapeutic potential of genetically engineered stem cells in cancer treatment

ORCID Icon, , , , & ORCID Icon
Received 06 Feb 2023, Accepted 13 Apr 2023, Published online: 03 May 2023

References

  • Acharya, U. H., & Walter, R. B. (2020). Chimeric Antigen Receptor (CAR)-modified immune effector cell therapy for Acute Myeloid Leukemia (AML). Cancers, 12(12), 3617. https://doi.org/10.3390/cancers12123617
  • Alekseenko, I., Kuzmich, A., Kondratyeva, L., Kondratieva, S., Pleshkan, V., & Sverdlov, E. (2021). Step-by-step immune activation for suicide gene therapy reinforcement. International Journal of Molecular Sciences, 22(17), 9376. https://doi.org/10.3390/ijms22179376
  • Atala, A. (2021). STEM CELLS translational medicine: A decade of evolution to a vibrant stem cell and regenerative medicine global community. Stem Cells Translational Medicine, 10(2), 157–159. https://doi.org/10.1002/sctm.21-0016
  • Atiya, H., Frisbie, L., Pressimone, C., & Coffman, L. (2020). Mesenchymal stem cells in the tumor microenvironment. Tumor Microenvironment, 9(3) , 31–42.
  • Baron, F., Lechanteur, C., Willems, E., Bruck, F., Baudoux, E., Seidel, L., Vanbellinghen, J. -F., Hafraoui, K., Lejeune, M., & Gothot, A., Fillet, G., Beguin, Y. (2010). Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biology of Blood and Marrow Transplantation, 16(6), 838–847. https://doi.org/10.1016/j.bbmt.2010.01.011
  • Bazinet, A., & Popradi, G. (2019). A general practitioner’s guide to hematopoietic stem-cell transplantation. Current Oncology, 26(3), 187–191. https://doi.org/10.3747/co.26.5033
  • Bonaventura, G., Munafò, A., Bellanca, C. M., La Cognata, V., Iemmolo, R., Attaguile, G. A., DiMauro, R., DiBenedetto, G., Cantarella, G., Barcellona, M. L., Cavallaro, S., & Bernardini, R. (2021). Stem cells: Innovative therapeutic options for neurodegenerative diseases? Cells, 10(8), 1992. https://doi.org/10.3390/cells10081992
  • Brossa, A., Tapparo, M., Fonsato, V., Papadimitriou, E., Delena, M., Camussi, G., & Bussolati, B. (2021). Coincubation as mir-loading strategy to improve the anti-tumor effect of stem cell-derived evs. Pharmaceutics, 13(1), 76. https://doi.org/10.3390/pharmaceutics13010076
  • Butt, M. H., Zaman, M., Ahmad, A., Khan, R., Mallhi, T. H., Hasan, M. M., Khan, Y. H., Hafeez, S., Massoud, E. E. S., Rahman, M. H., & Cavalu, S. (2022). Appraisal for the potential of viral and nonviral vectors in gene therapy: A review. Genes (Basel), 13(8), 1370. https://doi.org/10.3390/genes13081370
  • Chen, C., Yue, D., Lei, L., Wang, H., Lu, J., Zhou, Y., Liu, S., Ding, T., Guo, M., & Xu, L. (2018). Promoter-operating targeted expression of gene therapy in cancer: Current stage and prospect. Molecular Therapy-Nucleic Acids, 11, 508–514. https://doi.org/10.1016/j.omtn.2018.04.003
  • Christodoulou, I., Goulielmaki, M., Devetzi, M., Panagiotidis, M., Koliakos, G., & Zoumpourlis, V. (2018). Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review. Stem Cell Research & Therapy, 9(1), 1–38. https://doi.org/10.1186/s13287-018-1078-8
  • Chu, D. T., Nguyen, T. T., Tien, N. L. B., Tran, D. K., Jeong, J. H., Anh, P. G., Thanh, V. V., Truong, D. T., & Dinh, T. C. (2020). Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells, 9(3), 563. https://doi.org/10.3390/cells9030563
  • Cordero, A., Ramsey, M. D., Kanojia, D., Fares, J., Petrosyan, E., Schwartz, C. W., Burga, R., Zhang, P., Rashidi, A., & Castro, B., Xiao, T., Lee-Chang, C., Miska, J., Balyasnikova, I V., Ahmed, A U., Lesniak, M S. (2022). Combination of tucatinib and neural stem cells secreting anti-HER2 antibody prolongs survival of mice with metastatic brain cancer. Proceedings of the National Academy of Sciences, 119(1), e2112491119. https://doi.org/10.1073/pnas.2112491119
  • Das, M. K., Lunavat, T. R., Miletic, H., & Hossain, J. A. (2021). The potentials and pitfalls of using adult stem cells in cancer treatment. Cell Biology and Translational Medicine, 12, 139–157.
  • Delpu, Y., Cordelier, P., Cho, W. C., & Torrisani, J. (2013). DNA methylation and cancer diagnosis. International Journal of Molecular Sciences, 14(7), 15029–15058. https://doi.org/10.3390/ijms140715029
  • Dong, Y., Wu, X., Chen, X., Zhou, P., Xu, F., & Liang, W. (2021). Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomedicine & Pharmacotherapy, 137, 111236. https://doi.org/10.1016/j.biopha.2021.111236
  • Džidić-Krivić, A., Kusturica, J., Sher, E. K., Selak, N., Osmančević, N., Karahmet Farhat, E., & Sher, F. (2023). Effects of intestinal flora on pharmacokinetics and pharmacodynamics of drugs. Drug Metabolism Reviews, 55(1–2), 1–14. https://doi.org/10.1080/03602532.2023.2186313
  • Emina, K., Prnjavorac, B., Softić, A., Srabović, N., Tamer, B., Sher, F., Lekić, L., Farhat, E. K., Meseldzic, N., & Imamović, S. (2022). IDF21-0423 Michigan neuropathy screening for assessing diabetes in participants and correlation to the immune response. Diabetes Research and Clinical Practice, 186, 109682. https://doi.org/10.1016/j.diabres.2022.109682
  • Espinosa-Cotton, M., & Cheung, N. -K.V. (2021). Immunotherapy and radioimmunotherapy for desmoplastic small round cell tumor. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.772862
  • Garcia-Mayea, Y., Mir, C., Masson, F., Paciucci, R., & LLeonart, M. (2020). Insights into new mechanisms and models of cancer stem cell multidrug resistance. Seminars in Cancer Biology, 60, 166–180. https://doi.org/10.1016/j.semcancer.2019.07.022
  • Gutova, M., Goldstein, L., Metz, M., Hovsepyan, A., Tsurkan, L. G., Tirughana, R., Tsaturyan, L., Annala, A. J., Synold, T. W., & Wan, Z., Seeger, R., Anderson, C., Moats, R A., Potter, P M., Aboody, K S. (2017). Optimization of a neural stem-cell-mediated carboxylesterase/irinotecan gene therapy for metastatic neuroblastoma. Molecular Therapy-Oncolytics, 4, 67–76. https://doi.org/10.1016/j.omto.2016.11.004
  • Huang, H., Du, X., He, Z., Yan, Z., & Han, W. (2021). Nanoparticles for stem cell tracking and the potential treatment of cardiovascular diseases. Frontiers in Cell and Developmental Biology, 9, 662406. https://doi.org/10.3389/fcell.2021.662406
  • Huang, T., Song, X., Xu, D., Tiek, D., Goenka, A., Wu, B., Sastry, N., Hu, B., & Cheng, S. -Y. (2020). Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 10(19), 8721. https://doi.org/10.7150/thno.41648
  • Hu, Q., Sun, W., Wang, J., Ruan, H., Zhang, X., Ye, Y., Shen, S., Wang, C., Lu, W., & Cheng, K., Dotti, G., Zeidner, J F., Wang, J., Gu, Z. (2018). Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2(11), 831–840. https://doi.org/10.1038/s41551-018-0310-2
  • Iftikhar, M., Noureen, A., Jabeen, F., Uzair, M., Rehman, N., Sher, E. K., Katubi, K. M., Américo-Pinheiro, J. H. P., & Sher, F. (2023). Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. Chemosphere, 311, 136927. https://doi.org/10.1016/j.chemosphere.2022.136927
  • Inthagard, J., Edwards, J., & Roseweir, A. K. (2019). Immunotherapy: Enhancing the efficacy of this promising therapeutic in multiple cancers. Clinical Science, 133(2), 181–193. https://doi.org/10.1042/CS20181003
  • Inui, S., Minami, K., Ito, E., Imaizumi, H., Mori, S., Koizumi, M., Fukushima, S., Miyagawa, S., Sawa, Y., & Matsuura, N. (2017). Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells. Journal of Radiation Research, 58(4), 430–438. https://doi.org/10.1093/jrr/rrw124
  • Iriguchi, S., & Kaneko, S. (2019). Toward the development of true “off‐the‐shelf” synthetic T‐cell immunotherapy. Cancer Science, 110(1), 16–22. https://doi.org/10.1111/cas.13892
  • Jang, S., Lee, K., & Ju, J. H. (2021). Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. International Journal of Molecular Sciences, 22(5), 2619. https://doi.org/10.3390/ijms22052619
  • Jiang, Y., Wells, A., Sylakowski, K., Clark, A. M., & Ma, B. (2019). Adult stem cell functioning in the tumor micro-environment. International Journal of Molecular Sciences, 20(10), 2566. https://doi.org/10.3390/ijms20102566
  • Juarez, J. G., Harun, N., Thien, M., Welschinger, R., Baraz, R., Dela Pena, A., Pitson, S. M., Rettig, M., DiPersio, J. F., & Bradstock, K. F., Bendall, L J. (2012). Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood, the Journal of the American Society of Hematology, 119(3), 707–716. https://doi.org/10.1182/blood-2011-04-348904
  • Jurado, M., De La Mata, C., Ruiz-García, A., López-Fernández, E., Espinosa, O., Remigia, M. J., Moratalla, L., Goterris, R., García-Martín, P., & Ruiz-Cabello, F., Garzón, S., Pascual, M J., Espigado, I., Solano, C. (2017). Adipose tissue-derived mesenchymal stromal cells as part of therapy for chronic graft-versus-host disease: A phase I/II study. Cytotherapy, 19(8), 927–936. https://doi.org/10.1016/j.jcyt.2017.05.002
  • Kabakov, A., Yakimova, A., & Matchuk, O. (2020). Molecular chaperones in cancer stem cells: Determinants of stemness and potential targets for antitumor therapy. Cells, 9(4), 892. https://doi.org/10.3390/cells9040892
  • Karahmet, E., Prnjavorac, B., Bego, T., Meseldžić, N., Imamović, S., Karahmet, E., Sher, F., Lekić, L., & Begić, E. J. A. S. M. S. (2021). IL-1β in correlation to the common diabetic complications. J Acta Scientific MEDICAL SCIENCES 5(9), 25–29. https://doi.org/10.31080/ASMS.2020.05.0999
  • Karahmet, E., Prnjavorac, B., Bego, T., Softić, A., Begić, L., Begić, E., Karahmet, E., Prnjavorac, L., & Prnjavorac, I. (2021). Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy. Medicinski Glasnik: Official Publication of the Medical Association of Zenica-Doboj Canton, Bosnia and Herzegovina, 18(1), 12–17. https://doi.org/10.17392/1279-21
  • Karthaus, W. R., Hofree, M., Choi, D., Linton, E. L., Turkekul, M., Bejnood, A., Carver, B., Gopalan, A., Abida, W., & Laudone, V., Biton, M., Chaudhary, O., Xu, T., Masilionis, I., Manova, K., Mazutis, L., Pe’er, D., Regev, A., Sawyers, C L. (2020). Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 368(6490), 497–505. https://doi.org/10.1126/science.aay0267
  • Katsukawa, M., Nakajima, Y., Fukumoto, A., Doi, D., & Takahashi, J. (2016). Fail-safe therapy by gamma-ray irradiation against tumor formation by human-induced pluripotent stem cell-derived neural progenitors. Stem Cells and Development, 25(11), 815–825. https://doi.org/10.1089/scd.2015.0394
  • Khalid, A. D., Ur-Rehman, N., Tariq, G. H., Ullah, S., Buzdar, S. A., Iqbal, S. S., Sher, E. K., Alsaiari, N. S., Hickman, G. J., & Sher, F. (2023). Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species. Chemosphere, 310, 136885. https://doi.org/10.1016/j.chemosphere.2022.136885
  • Kooreman, N. G., Kim, Y., de Almeida, P. E., Termglinchan, V., Diecke, S., Shao, N. -Y., Wei, T. -T., Yi, H., Dey, D., & Nelakanti, R., Brouwer, T P., Paik, D T., Sagiv-Barfi, I., Han, A., Quax, P.H.A., Hamming, J F., Levy, R., Davis, M M., Wu, J C. (2018). Autologous Ipsc-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell, 22(4), 501–513. e507. https://doi.org/10.1016/j.stem.2018.01.016
  • Layek, B., Sadhukha, T., Panyam, J., & Prabha, S. (2018). Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Molecular Cancer Therapeutics, 17(6), 1196–1206. https://doi.org/10.1158/1535-7163.MCT-17-0682
  • Layek, B., Sehgal, D., Argenta, P. A., Panyam, J., & Prabha, S. (2019). Nanoengineering of mesenchymal stem cells via surface modification for efficient cancer therapy. Advanced Therapeutics, 2(9), 1900043. https://doi.org/10.1002/adtp.201900043
  • Liesveld, J. L., Sharma, N., & Aljitawi, O. S. (2020). Stem cell homing: From physiology to therapeutics. Stem Cells, 38(10), 1241–1253. https://doi.org/10.1002/stem.3242
  • Li, Y., Hermanson, D. L., Moriarity, B. S., & Kaufman, D. S. (2018). Human Ipsc-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 23(2), 181–192. e185. https://doi.org/10.1016/j.stem.2018.06.002
  • Lin, W., Huang, L., Li, Y., Fang, B., Li, G., Chen, L., & Xu, L. (2019). Mesenchymal stem cells and cancer: Clinical challenges and opportunities. BioMed Research International, 2019, 1–12. https://doi.org/10.1155/2019/8148156
  • Lisini, D., Nava, S., Frigerio, S., Pogliani, S., Maronati, G., Marcianti, A., Coccè, V., Bondiolotti, G., Cavicchini, L., & Paino, F., Petrella, F., Alessandri, G., Parati, E A., Pessina, A. (2020). Automated large-scale production of paclitaxel loaded mesenchymal stromal cells for cell therapy applications. Pharmaceutics, 12(5), 411. https://doi.org/10.3390/pharmaceutics12050411
  • Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020). Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Reviews and Reports, 16(1), 3–32. https://doi.org/10.1007/s12015-019-09935-x
  • Liu, Y., Wang, J., Xiong, Q., Hornburg, D., Tao, W., & Farokhzad, O. C. (2020). Nano–bio interactions in cancer: From therapeutics delivery to early detection. Accounts of Chemical Research, 54(2), 291–301. https://doi.org/10.1021/acs.accounts.0c00413
  • Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and cancer stem cells. Cell Communication and Signaling, 19(1), 1–11. https://doi.org/10.1186/s12964-020-00627-5
  • Lohan, P., Treacy, O., Griffin, M. D., Ritter, T., & Ryan, A. E. (2017). Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: Are we still learning? Frontiers in Immunology, 8, 1626. https://doi.org/10.3389/fimmu.2017.01626
  • Lou, G., Chen, L., Xia, C., Wang, W., Qi, J., Li, A., Zhao, L., Chen, Z., Zheng, M., & Liu, Y. (2020). MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. Journal of Experimental & Clinical Cancer Research, 39(1), 1–9. https://doi.org/10.1186/s13046-019-1512-5
  • Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein, J. N., Kamińska, B., Huelsken, J., Omberg, L., & Gevaert, O., Colaprico, A., Czerwińska, P., Mazurek, S., Mishra, L., Heyn, H., Krasnitz, A., Godwin, A K., Lazar, A J., Stuart, J M., Hoadley, K A., Mariamidze, A.…. (2018). Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell, 173(2), 338–354. e315. https://doi.org/10.1016/j.cell.2018.03.034
  • Mercer-Smith, A. R., Buckley, A., Valdivia, A., Jiang, W., Thang, M., Bell, N., Kumar, R. J., Bomba, H. N., Woodell, A. S., Luo, J., Floyd, S R., Hingtgen, S D. (2022). Next-generation tumor-homing induced neural stem cells as an adjuvant to radiation for the treatment of metastatic lung cancer. Stem Cell Reviews and Reports.18 (7), 1–20. https://doi.org/10.1007/s12015-022-10375-3
  • Miliotou, A. N., & Papadopoulou, L. C. (2018). CAR T-cell therapy: A new era in cancer immunotherapy. Current Pharmaceutical Biotechnology, 19(1), 5–18. https://doi.org/10.2174/1389201019666180418095526
  • Miska, J., & Lesniak, M. S. (2015). Neural stem cell carriers for the treatment of glioblastoma multiforme. EBioMedicine, 2(8), 774–775. https://doi.org/10.1016/j.ebiom.2015.08.022
  • Moku, G., Layek, B., Trautman, L., Putnam, S., Panyam, J., & Prabha, S. (2019). Improving payload capacity and anti-tumor efficacy of mesenchymal stem cells using TAT peptide functionalized polymeric nanoparticles. Cancers, 11(4), 491. https://doi.org/10.3390/cancers11040491
  • Muroi, K., Miyamura, K., Okada, M., Yamashita, T., Murata, M., Ishikawa, T., Uike, N., Hidaka, M., Kobayashi, R., & Imamura, M., Tanaka, J., Ohashi, K., Taniguchi, S., Ikeda, T., Eto, T., Mori, M., Yamaoka, M., Ozawa, K. (2016). Bone marrow-derived mesenchymal stem cells (JR-031) for steroid-refractory grade III or IV acute graft-versus-host disease: A phase II/III study. International Journal of Hematology, 103(2), 243–250. https://doi.org/10.1007/s12185-015-1915-9
  • Najafi, M., Mortezaee, K., & Ahadi, R. (2019). Cancer stem cell (a) symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sciences, 231, 116520.https://doi.org/10.1016/j.lfs.2019.05.076
  • Nguyen, H., Zarriello, S., Coats, A., Nelson, C., Kingsbury, C., Gorsky, A., Rajani, M., Neal, E. G., & Borlongan, C. V. (2019). Stem cell therapy for neurological disorders: A focus on aging. Neurobiology of Disease, 126, 85–104. https://doi.org/10.1016/j.nbd.2018.09.011
  • Okajima, F. (2013). Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cellular Signalling, 25(11), 2263–2271. https://doi.org/10.1016/j.cellsig.2013.07.022
  • Ouyang, X., Telli, M. L., & Wu, J. C. (2019). Induced pluripotent stem cell-based cancer vaccines. Frontiers in Immunology, 10, 1510. https://doi.org/10.3389/fimmu.2019.01510
  • Pakravan, K., Babashah, S., Sadeghizadeh, M., Mowla, S. J., Mossahebi-Mohammadi, M., Ataei, F., Dana, N., & Javan, M. (2017). MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cellular Oncology, 40(5), 457–470. https://doi.org/10.1007/s13402-017-0335-7
  • Papaccio, F., Paino, F., Regad, T., Papaccio, G., Desiderio, V., & Tirino, V. (2017). Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development. Stem Cells Translational Medicine, 6(12), 2115–2125. https://doi.org/10.1002/sctm.17-0138
  • Patterson, A. D., Gonzalez, F. J., Perdew, G. H., & Peters, J. M. (2018). Molecular regulation of carcinogenesis: friend and foe. Toxicological Sciences: An Official Journal of the Society of Toxicology, 165(2), 277–283. https://doi.org/10.1093/toxsci/kfy185
  • Qiao, Y., Agboola, O. S., Hu, X., Wu, Y., & Lei, L. (2020). Tumorigenic and immunogenic properties of induced pluripotent stem cells: A promising cancer vaccine. Stem Cell Reviews and Reports, 16(6), 1049–1061. https://doi.org/10.1007/s12015-020-10042-5
  • Rahbarghazi, R., Jabbari, N., Sani, N. A., Asghari, R., Salimi, L., Kalashani, S. A., Feghhi, M., Etemadi, T., Akbariazar, E., & Mahmoudi, M., Rezaie, J. (2019). Tumor-derived extracellular vesicles: Reliable tools for Cancer diagnosis and clinical applications. Cell Communication and Signaling, 17(1), 1–17. https://doi.org/10.1186/s12964-019-0390-y
  • Rosenblum, D., Joshi, N., Tao, W., Karp, J. M., & Peer, D. (2018). Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-03705-y
  • Ruiu, R., Tarone, L., Rolih, V., Barutello, G., Bolli, E., Riccardo, F., Cavallo, F., & Conti, L. (2019). Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer’s source. Progress in Molecular Biology and Translational Science, 164, 119–188.
  • Sage, E., Davies, A., Kolluri, K., Patrick, S., Weil, B., Rego, R. V. T. P., Edwards, A., Bain, O., Santilli, G., & Thakrar, R., Champion, K., Day, A., Popova, B., Fullen, D., Thrasher, A., Kalber, T., Forster, M., Lythgoe, M., Lowdell, M., Janes, S.M. (2018). Targeted stem cells expressing TRAIL as a therapy for lung Cancer TACTICAL: A phase I/II trial. Lung Cancer, 115(Supp. 1), S87. https://doi.org/10.1016/S0169-5002(18)30222-8
  • Shao, A., Tu, S., Lu, J., & Zhang, J. (2019). Crosstalk between stem cell and spinal cord injury: Pathophysiology and treatment strategies. Stem Cell Research & Therapy,10(1), 1–13. https://doi.org/10.1186/s13287-019-1357-z
  • Siegel, R., Miller, K., Fuchs, H., & Jemal, A. (2022). Cancer statistics, 2022. CA 384. CA: A Cancer Journal for Clinicians, 72(1), 385. https://doi.org/10.3322/caac.21708
  • Society, A. C. (2022). “Cancer facts & figures 2022.” Retrieved 10/23/2022, from https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2022/2022-cancer-facts-and-figures.pdf.
  • Suman, S., Domingues, A., Ratajczak, J., & Ratajczak, M. Z. (2019). Potential clinical applications of stem cells in regenerative medicine. Stem Cells, 1–22. https://link.springer.com/chapter/10.1007/978-3-030-31206-0_1
  • Sung, H., Ferlay, J., & Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Sun, Y., Lu, Y., Yin, L., & Liu, Z. (2020). The roles of nanoparticles in stem cell-based therapy for cardiovascular disease. Frontiers in Bioengineering and Biotechnology, 8, 947. https://doi.org/10.3389/fbioe.2020.00947
  • Suryaprakash, S., Lao, Y. -H., Cho, H. -Y., Li, M., Ji, H. Y., Shao, D., Hu, H., Quek, C. H., Huang, D., & Mintz, R. L., Bagó, J R., Hingtgen, S D., Lee, K-B., Leong, K W. (2019). Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Letters, 19(3), 1701–1705. https://doi.org/10.1021/acs.nanolett.8b04697
  • Tobias, A. L., Thaci, B., Auffinger, B., Rincón, E., Balyasnikova, I. V., Kim, C. K., Han, Y., Zhang, L., Aboody, K. S., & Ahmed, A. U., Lesniak, M S. (2013). The timing of neural stem cell-based virotherapy is critical for optimal therapeutic efficacy when applied with radiation and chemotherapy for the treatment of glioblastoma. Stem Cells Translational Medicine, 2(9), 655–666. https://doi.org/10.5966/sctm.2013-0039
  • Toledo-Guzmán, M. E., Bigoni-Ordóñez, G. D., Hernández, M. I., & Ortiz-Sánchez, E. (2018). Cancer stem cell impact on clinical oncology. World Journal of Stem Cells, 10(12), 183. https://doi.org/10.4252/wjsc.v10.i12.183
  • Tong, Y., Liu, X., Xia, D., Peng, E., Yang, X., Liu, H., Ye, T., Wang, X., He, Y., Xu, H., Ye, Z., Chen, Z., Tang, K. (2021). Biological roles and clinical significance of exosome-derived noncoding RNAs in bladder cancer. Frontiers in Oncology, 11, 704–703. https://doi.org/10.3389/fonc.2021.704703
  • Tripolszky, A., Németh, K., Szabó, P. T., & Bálint, E. (2019). Synthesis of (1, 2, 3-triazol-4-yl) methyl phosphinates and (1, 2, 3-triazol-4-yl) methyl phosphates by copper-catalyzed azide-alkyne cycloaddition. Molecules, 24(11), 2085. https://doi.org/10.3390/molecules24112085
  • Vakhshiteh, F., Atyabi, F., & Ostad, S. N. (2019). Mesenchymal stem cell exosomes: A two-edged sword in cancer therapy. International Journal of Nanomedicine, 14, 2847–2860.https://doi.org/10.2147/IJN.S200036
  • von Einem, J. C., Guenther, C., Volk, H. D., Grütz, G., Hirsch, D., Salat, C., Stoetzer, O., Nelson, P. J., Michl, M., & Modest, D. P., Holch, J W., Angele, M., Bruns, C., Niess, H., Heinemann, V. (2019). Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells: Results from the phase 1/2 TREAT‐ME‐1 trial. International Journal of Cancer, 145(6), 1538–1546. https://doi.org/10.1002/ijc.32230
  • Wang, X., Chen, H., Zeng, X., Guo, W., Jin, Y., Wang, S., Tian, R., Han, Y., Guo, L., & Han, J., Wu, Y., Mei, L. (2019). Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharmaceutica Sinica B, 9(1), 167–176. https://doi.org/10.1016/j.apsb.2018.08.006
  • Wang, J., Li, W., Zhang, L., Ban, L., Chen, P., Du, W., Feng, X., & Liu, B. -F. (2017). Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Applied Materials & Interfaces, 9(33), 27441–27452. https://doi.org/10.1021/acsami.7b06464
  • Wang, Y., Tian, M., Wang, F., Heng, B. C., Zhou, J., Cai, Z., & Liu, H. (2019). Understanding the immunological mechanisms of mesenchymal stem cells in allogeneic transplantation: From the aspect of major histocompatibility complex class I. Stem Cells and Development, 28(17), 1141–1150. https://doi.org/10.1089/scd.2018.0256
  • Wei, W., Huang, Y., Li, D., Gou, H. -F., & Wang, W. (2018). Improved therapeutic potential of MSCs by genetic modification. Gene Therapy, 25(8), 538–547. https://doi.org/10.1038/s41434-018-0041-8
  • Westhoff, C. M., & Rahorst, L. (2022). Immunohematology and compatibility testing. Rossi’s Principles of Transfusion Medicine, 118–130.
  • Wu, X. -B., Liu, Y., Wang, G. -H., Xu, X., Cai, Y., Wang, H. -Y., Li, Y. -Q., Meng, H. -F., Dai, F., & Jin, J. -D. (2016). Mesenchymal stem cells promote colorectal cancer progression through AMPK/AMPK/Mtor-mediated NF-κB activation. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep21420
  • Xu, H., Zhao, G., Zhang, Y., Jiang, H., Wang, W., Zhao, D., Hong, J., Yu, H., & Qi, L. (2019). Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Research & Therapy, 10(1), 1–14. https://doi.org/10.1186/s13287-019-1446-z
  • Yahya, E. B., & Alqadhi, A. M. (2021). Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sciences, 269, (0024–3205),119087 . https://doi.org/10.1016/j.lfs.2021.119087
  • Yin, F., Battiwalla, M., Ito, S., Feng, X., Chinian, F., Melenhorst, J. J., Koklanaris, E., Sabatino, M., Stroncek, D., & Samsel, L., Klotz, J., Hensel, N F., Robey, P G., Barrett, A J. (2014). Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: Correlation of biological markers with clinical responses. Stem Cells, 32(5), 1278–1288. https://doi.org/10.1002/stem.1638
  • Yin, L., Liu, X., Shi, Y., Ocansey, D. K. W., Hu, Y., Li, X., Zhang, C., Xu, W., & Qian, H. (2020). Therapeutic advances of stem cell-derived extracellular vesicles in regenerative medicine. Cells, 9(3), 707. https://doi.org/10.3390/cells9030707
  • Zhang, G., Miao, F., Xu, J., & Wang, R. (2020). Mesenchymal stem cells from bone marrow regulate invasion and drug resistance of multiple myeloma cells by secreting chemokine CXCL13. Bosnian Journal of Basic Medical Sciences, 20(2), 209.https://doi.org/10.17305/bjbms.2019.4344
  • Zhao, Y., Shi, Y., Yang, H., Liu, M., Shen, L., Zhang, S., Liu, Y., Zhu, J., Lan, J., & Li, J., Ge, S. (2022). Stem cell microencapsulation maintains stemness in inflammatory microenvironment. International Journal of Oral Science, 14(1), 48. https://doi.org/10.1038/s41368-022-00198-w
  • Zhou, H., Guo, M., Bian, C., Sun, Z., Yang, Z., Zeng, Y., Ai, H., & Zhao, R. C. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412. https://doi.org/10.1016/j.bbmt.2009.11.006
  • Zhu, R., Zhang, F., Peng, Y., Xie, T., Wang, Y., & Lan, Y. (2022). Current progress in cancer treatment using nanomaterials. Frontiers in Oncology, 12, 930125. https://doi.org/10.3389/fonc.2022.930125