208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, characterization and application of BR@Ag nanocomposite material for high degree reduction of p-nitro phenol under a suitable condition

, , , , ORCID Icon &
Received 24 Apr 2023, Accepted 15 May 2023, Published online: 25 May 2023

References

  • Balomenos, E., Gianopoulou, I., Panias, D., & Paspaliaris, I. (2011). A novel red mud treatment process: Process design and preliminary results. Travaux ICSOBA, 36(40), 255–266.
  • Behera, M., Tiwari, N., Banerjee, S., Sheik, A. R., Kumar, M., Pal, M., Pal, P., Chatterjee, R. P., Chakrabortty, S., & Tripathy, S. K. (2022). Ag/Biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids and Surfaces, 642, 128616. https://doi.org/10.1016/j.colsurfa.2022.128616
  • Behera, M., Tiwari, N., Basu, A., Rekha Mishra, S., Banerjee, S., Chakrabortty, S., & Tripathy, S. K. (2021). Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Advanced Powder Technology, 32(8), 2905–2915. https://doi.org/10.1016/j.apt.2021.06.005
  • Biswas, G., Thakurta, S. G., Chakrabarty, J., Adhikari, K., & Dutta, S. (2018). Evaluation of fluoride bioremediation and production of biomolecules by living cyanobacteria under fluoride stress condition. Ecotoxicology & Environmental Safety, 148, 26–36. https://doi.org/10.1016/j.ecoenv.2017.10.019
  • Borras, C., Laredo, T., Mostany, J., & Scharifker, B. (2004). Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 electrodes by UV-Vis and FTIR in situ spectroscopy. Electrochimica acta, 49(4), 641–648. https://doi.org/10.1016/j.electacta.2003.09.019
  • Cui, Y. -W., Li, J., Du, Z. -F., Peng, Y. -Z., & Yang, G. (2016). Cr (VI) adsorption on red mud modified by lanthanum: Performance, kinetics and mechanisms. PLos One, 11(9), e0161780. https://doi.org/10.1371/journal.pone.0161780
  • Denrah, S., & Sarkar, M. (2019). Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chemical Engineering Research & Design, 144, 494–504. https://doi.org/10.1016/j.cherd.2019.02.021
  • Du, Y., Dai, M., Cao, J., & Peng, C. (2019). Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb (II) and Cr (VI) from aqueous solutions. RSC Advances, 9(57), 33486–33496. https://doi.org/10.1039/C9RA06978J
  • Feigl, V., Anton, A., Uzigner, N., & Gruiz, K. (2012). Red mud as a chemical stabilizer for soil contaminated with toxic metals. Water, Air, & Soil Pollution, 223(3), 1237–1247. https://doi.org/10.1007/s11270-011-0940-4
  • Friend, C. M., & Xu, B. (2017). Heterogeneous catalysis: A central science for a sustainable future. Accounts of Chemical Research, 50(3), 517–521. https://doi.org/10.1021/acs.accounts.6b00510
  • Friesl, W., Horak, O., & Wenzel, W. W. (2004). Immobilization of heavy metals in soils by the application of bauxite residues: Pot experiments under field conditions. Journal of Plant Nutrition & Soil Science, 167(1), 54–59. https://doi.org/10.1002/jpln.200320941
  • Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., Nyiro-Kosa, I., Csakberenyi-Malasics, D., Toth, Á., Czitrovszky, A. R., Nagy, A., Nagy, S., Ács, A., Kovács, A., Ferincz, Á., Hartyáni, Z., & Pósfai, M. (2011). The red mud accident in Ajka (Hungary): Characterization and potential health effects of fugitive dust. Environmental Science & Technology, 45(4), 1608–1615. https://doi.org/10.1021/es104005r
  • Genç, H., Tjell, J. C., McConchie, D., & Schuiling, O. (2003). Adsorption of arsenate from water using neutralized red mud. Journal of Colloid and Interface Science, 264(2), 327–334. https://doi.org/10.1016/S0021-9797(03)00447-8
  • Gök, A., Omastova, M., & Prokeš, J. (2007). Synthesis and characterization of red mud/polyaniline composites: Electrical properties and thermal stability. European Polymer Journal, 43(6), 2471–2480. https://doi.org/10.1016/j.eurpolymj.2007.03.005
  • Gray, C., Dunham, S., Dennis, P., Zhao, F., & McGrath, S. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 142(3), 530–539. https://doi.org/10.1016/j.envpol.2005.10.017
  • Guo, Y., Zhao, Q., Yan, K., Cheng, F., & Lou, H. H. (2014). Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud. Industrial & Engineering Chemistry Research, 53(11), 4518–4521. https://doi.org/10.1021/ie500295t
  • Hallac, B. B., Brown, J. C., Stavitski, E., Harrison, R. G., & Argyle, M. D. (2018). In Situ UV-Visible assessment of iron-based high-temperature water-gas shift catalysts promoted with lanthana: An extent of reduction study. Catalysts, 8(2), 63. https://doi.org/10.3390/catal8020063
  • Jiang, Z. -J., Liu, C. -Y., & Sun, L. -W. (2005). Catalytic properties of silver nanoparticles supported on silica spheres. The Journal of Physical Chemistry B, 109(5), 1730–1735. https://doi.org/10.1021/jp046032g
  • Ju, S. -H., Lu, S. -D., Peng, J. -H., Zhang, L. -B., Srinivasakannan, C., Guo, S. -H., & LI, W. (2012). Removal of cadmium from aqueous solutions using red mud granulated with cement. Transactions of Nonferrous Metals Society of China, 22(12), 3140–3146. https://doi.org/10.1016/S1003-6326(12)61766-X
  • Kehagia, F. (2014). Construction of an unpaved road using industrial by-products (bauxite residue). WSEAS Transactions on Environment and Development, 10, 160–168.
  • Khan, F. U., Chen, Y., Khan, N. U., Khan, Z. U. H., Khan, A. U., Ahmad, A., Tahir, K., Wang, L., Khan, M. R., & Wan, P. (2016). Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. Journal of Photochemistry and Photobiology B Biology, 164, 344–351. https://doi.org/10.1016/j.jphotobiol.2016.09.042
  • Khodashenas, B., & Ghorbani, H. R. (2019). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, 12(8), 1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014
  • Klauber, C., Gräfe, M., & Power, G. (2011). Bauxite residue issues: II. options for residue utilization. Hydrometallurgy, 108(1–2), 11–32. https://doi.org/10.1016/j.hydromet.2011.02.007
  • Koehne, I., Schmeier, T. J., Bielinski, E. A., Pan, C. J., Lagaditis, P. O., Bernskoetter, W. H., Takase, M. K., Würtele, C., Hazari, N., & Schneider, S. (2014). Synthesis and structure of six-coordinate iron borohydride complexes supported by PNP ligands. Inorganic Chemistry, 53(4), 2133–2143. https://doi.org/10.1021/ic402762v
  • Kumar, R., Liu, C., Ha, G. -S., Park, Y. -K., Ali Khan, M., Jang, M., Kim, S. -H., Amin, M. A., Gacem, A., & Jeon, B. -H. (2022). Downstream recovery of Li and value-added metals (Ni, Co, and Mn) from leach liquor of spent lithium-ion batteries using a membrane-integrated hybrid system. Chemical Engineering Journal, 447, 137507. https://doi.org/10.1016/j.cej.2022.137507
  • Lockwood, C. L., Mortimer, R. J., Stewart, D. I., Mayes, W. M., Peacock, C. L., Polya, D. A., Lythgoe, P. R., Lehoux, A. P., Gruiz, K., & Burke, I. T. (2014). Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry, 51, 268–277. https://doi.org/10.1016/j.apgeochem.2014.10.009
  • Lyu, F., Gao, J., Sun, N., Liu, R., Sun, X., Cao, X., Wang, L., & Sun, W. (2019). Utilisation of propyl gallate as a novel selective collector for diaspore flotation. Minerals Engineering, 131, 66–72. https://doi.org/10.1016/j.mineng.2018.11.002
  • Lyu, F., Sun, N., Sun, W., Khoso, S. A., Tang, H. -H., & Wang, L. (2019). Preliminary assessment of revegetation potential through ryegrass growing on bauxite residue. Journal of Central South University, 26(2), 404–409.
  • Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Abdulkareem, S. A., Shuaib, D. T., Mohammed, A. K., & Sumaila, A. (2020). The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69808-z
  • Nekoeinia, M., Yousefinejad, S., Hasanpour, F., & Yousefian Dezaki, M. (2020). Highly efficient catalytic degradation of p-nitrophenol by Mn3O4.CuO nanocomposite as a heterogeneous fenton-like catalyst. Journal of Experimental Nanoscience, 15(1), 322–336. https://doi.org/10.1080/17458080.2020.1796977
  • Ni, F., Peng, X., Zhao, Y., He, J., Li, Y., & Luan, Z. (2012). Preparation of coagulant from red mud and semi-product of polyaluminum chloride for removal of phosphate from water. Desalination & Water Treatment, 40(1–3), 153–158. https://doi.org/10.1080/19443994.2012.671161
  • Ochsenkühn-Petropoulou, M. T., Hatzilyberis, K. S., Mendrinos, L. N., & Salmas, C. E. (2002). Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Industrial & Engineering Chemistry Research, 41(23), 5794–5801. https://doi.org/10.1021/ie011047b
  • Pal, P., Chakrabortty, S., & Linnanen, L. (2014). A nanofiltration–coagulation integrated system for separation and stabilization of arsenic from groundwater. The Science of the Total Environment, 476-477, 601–610. https://doi.org/10.1016/j.scitotenv.2014.01.041
  • Phillips, I. (1998). Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. Journal of Soil Contamination, 7(2), 191–212. https://doi.org/10.1080/10588339891334221
  • Pozun, Z. D., Rodenbusch, S. E., Keller, E., Tran, K., Tang, W., Stevenson, K. J., & Henkelman, G. (2013). A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. The Journal of Physical Chemistry C, 117(15), 7598–7604. https://doi.org/10.1021/jp312588u
  • Pradhan, N., Pal, A., & Pal, T. (2001). Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 17(5), 1800–1802. https://doi.org/10.1021/la000862d
  • Prajapati, S. S., Najar, P., & Tangde, V. M. (2016). Removal of phosphate using red mud: An environmentally hazardous waste by-product of alumina industry. Advances in Physical Chemistry, 2016, 1–9. https://doi.org/10.1155/2016/9075206
  • Rao, M., Mohapatra, B., Das, B., & Paul, A. (1997). Characterisation of sand rejects-A case study from an alumina refinery plant. Vistas in Geological Research, UU Special Publication in Geology, 2, 164–172.
  • Saha, J., Begum, A., Mukherjee, A., & Kumar, S. (2017). A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustainable Environment Research, 27(5), 245–250. https://doi.org/10.1016/j.serj.2017.04.003
  • Samuel, M. S., Jose, S., Selvarajan, E., Mathimani, T., & Pugazhendhi, A. (2020). Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; Application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. Journal of Photochemistry and Photobiology B Biology, 202, 111642. https://doi.org/10.1016/j.jphotobiol.2019.111642
  • Schoonheydt, R. A. (2010). UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts [10.1039/C0CS00080A]. Chemical Society Reviews, 39(12), 5051–5066. 10.1039/C0CS00080A
  • Sglavo, V. M., Maurina, S., Conci, A., Salviati, A., Carturan, G., & Cocco, G. (2000). Bauxite ‘red mud’in the ceramic industry. Part 2: Production of clay-based ceramics. Journal of the European Ceramic Society, 20(3), 245–252. https://doi.org/10.1016/S0955-2219(99)00156-9
  • Smičiklas, I., Smiljanić, S., Perić-Grujić, A., Šljivić-Ivanović, M., Mitrić, M., & Antonović, D. (2014). Effect of acid treatment on red mud properties with implications on Ni (II) sorption and stability. Chemical Engineering Journal, 242, 27–35. https://doi.org/10.1016/j.cej.2013.12.079
  • Spain, J. C. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49(1), 523–555. https://doi.org/10.1146/annurev.mi.49.100195.002515
  • Tsakiridis, P. E., Agatzini Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 116(1–2), 103–110. https://doi.org/10.1016/j.jhazmat.2004.08.002
  • Vachon, P., Tyagi, R. D., Auclair, J. C., & Wilkinson, K. J. (1994). Chemical and biological leaching of aluminum from red mud. Environmental Science & Technology, 28(1), 26–30. https://doi.org/10.1021/es00050a005
  • Wang, L., Hu, G., Lyu, F., Yue, T., Tang, H., Han, H., Yang, Y., Liu, R., & Sun, W. (2019). Application of red mud in wastewater treatment. Minerals, 9(5), 281. https://doi.org/10.3390/min9050281
  • Wang, X., Zhang, Y., Liu, J., Hu, P., Meng, K., Lv, F., Tong, W., & Chu, P. K. (2018). Dealkalization of red mud by carbide slag and flue gas. CLEAN–Soil, Air, Water, 46(3), 1700634. https://doi.org/10.1002/clen.201700634
  • Wang, X., Zhong, D., Hou, H., Gu, Q., Yang, R., Chen, J., Yang, J., & Wang, L. (2016). Catalytic degradation of PNP and stabilization/solidification of Cd simultaneously in soil using microwave-assisted Fe-bearing attapulgite. Chemical Engineering Journal, 304, 747–756. https://doi.org/10.1016/j.cej.2016.06.106
  • Widzyk-Capehart, E., Hekmat, A., & Singhal, R. (2018). Proceedings of the 18th Symposium on Environmental Issues and Waste Management in Energy and Mineral Production: SWEMP 2018—Selected Works. Springer.
  • Xiong, Z., Lai, B., Yuan, Y., Cao, J., Yang, P., & Zhou, Y. (2016). Degradation of p-nitrophenol (PNP) in aqueous solution by a micro-size Fe0/O3 process (mFe0/O3): Optimization, kinetic, performance and mechanism. Chemical Engineering Journal, 302, 137–145. https://doi.org/10.1016/j.cej.2016.05.052
  • Yadav, V. S., Prasad, M., Khan, J., Amritphale, S., Singh, M., & Raju, C. (2010). Sequestration of carbon dioxide (CO2) using red mud. Journal of Hazardous Materials, 176(1–3), 1044–1050. https://doi.org/10.1016/j.jhazmat.2009.11.146
  • Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., & Cai, Q. (2010). High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst. Environmental Science & Technology, 44(19), 7641–7646. https://doi.org/10.1021/es101711k
  • Zendehdel, M., Shoshtari-Yeganeh, B., Khanmohamadi, H., & Cruciani, G. (2017). Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology. Process Safety & Environmental Protection, 109, 172–191. https://doi.org/10.1016/j.psep.2017.03.028
  • Zhou, B., Cao, S., Chen, F., Zhang, F., & Zhang, Y. (2019). Recovery of alkali from bayer red mud using CaO and/or MgO. Minerals, 9(5), 269. https://doi.org/10.3390/min9050269

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.