352
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Preparation and optimisation of anionic liposomes for delivery of small peptides and cDNA to human corneal epithelial cells

, , , , , & show all
Pages 391-399 | Received 16 Jan 2016, Accepted 13 Jun 2016, Published online: 10 Aug 2016

References

  • Akhtar N. Vesicular ocular drug delivery system: preclinical and clinical perspective of drugs delivered via niosomes. Int J Biopharm, 2013;4:38–48.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science, 2004;303:1818–22.
  • Allon N, Saxena A, Chambers C, Doctor BP. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Control Release, 2012;160:217–24.
  • Audouy S, Molema G, De Leij L, Hoekstra D. Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med, 2000;2:465–76.
  • Bajoria R, Sooranna SR, Contractor SF. Endocytotic uptake of small unilamellar liposomes by human trophoblast cells in culture. Hum Reprod, 1997;12:1343–8.
  • Balazs DA, Godbey W. Liposomes for use in gene delivery. J Drug Deliv, 2011;2011:326497.
  • Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett, 2005;5:1615–19.
  • Çağdaş M, Sezer AD, Bucak S. 2014. Liposomes as potential drug carrier systems for drug delivery. In: Sezer AD, ed. Application of nanotechnology in drug delivery. Rijeka: InTech.
  • Calvo P, Remunan-Lopez C, Vila-Jato J, Alonso M. Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid Polym Sci, 1997;275:46–53.
  • Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterisation, and therapeutic efficacy. Int J Nanomedicine, 2012;7:49.
  • Chen CW, Yeh MK, Shiau CY, Chiang CH, Lu DW. Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery. Int J Nanomedicine, 2013;8:2613.
  • Colletier JP, Chaize B, Winterhalter M, Fournier D. Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol, 2002;2:9.
  • Dan N. Effect of liposome charge and PEG polymer layer thickness on cell-liposome electrostatic interactions. Biochim Biophys Acta, 2002;1564:343–8.
  • Daull P, Buggage R, Lambert G, Faure MO, Serle J, Wang RF, Garrigue JS. A comparative study of a preservative-free latanoprost cationic emulsion (Catioprost) and a BAK-preserved latanoprost solution in animal models. J Ocul Pharmacol Ther, 2012;28:515–23.
  • De La Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv drug deliv Rev, 2010;62:100–17.
  • Dinneen JL, Ceresa BP. Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane. Exp Cell Res, 2004;294:509–22.
  • Fathalla D, Soliman G, Fouad E. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. J Clin Exp Ophthalmol, 2015;6:2.
  • Figueiredo S, Cabral R, Luís D, Fernandes AR, Baptista PV. 2014. Conjugation of gold nanoparticles and liposomes for combined vehicles of drug delivery in cancer. In: Seifalian A, ed. Nanomedicine. Manchester: One Central Press, pp. 48–82.
  • Furrer P, Mayer JM, Gurny R. Ocular tolerance of preservatives and alternatives. Eur J Pharm Biopharm, 2002;53:263–80.
  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J, 2010;12:348–60.
  • Hu L, Plafker K, Vorozhko V, Zuna RE, Hanigan MH, Gorbsky GJ, Plafker SM, Angeletti PC, Ceresa BP. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell–cell fusion. Virology, 2009;384:125–34.
  • Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm, 2004;269:1–14.
  • Kovoor TA, Kim AS, Mcculley JP, Cavanagh HD, Jester JV, Bugde AC, Petroll WM. Evaluation of the corneal effects of topical ophthalmic fluoroquinolones using in vivo confocal microscopy. Eye Contact Lens, 2004;30:90–4.
  • Krasnici S, Werner A, Eichhorn ME, Schmitt‐Sody M, Pahernik SA, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K. Effect of the surface charge of liposomes on their uptake by angiogenic tumour vessels. Int J Cancer, 2003;105:561–7.
  • Kumar EA, Yuan Z, Palermo NY, Dong L, Ahmad G, Lokesh G, Kolar C, Kizhake S, Borgstahl GE, Band H. Peptide truncation leads to a twist and an unusual increase in affinity for casitas B-lineage lymphoma tyrosine kinase binding domain. J Med Chem, 2012;55:3583–7.
  • Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv, 2012;2012:604204.
  • Law S, Huang K, Chiang C. Acyclovir-containing liposomes for potential ocular delivery: corneal penetration and absorption. J Control Release, 2000;63:135–40.
  • Lee KD, Hong K, Papahadjopoulos D. Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta, 1992;1103:185–97.
  • Lee KD, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry, 1993;32:889–99.
  • Lutsiak M, Kwon GS, Samuel J. Analysis of peptide and lipopeptide content in liposomes. J Pharm Pharm Sci, 2002;5:279–84.
  • Mccalden T, Levy M. Retention of topical liposomal formulations on the cornea. Experientia, 1990;46:713–5.
  • Miller CR, Bondurant B, Mclean SD, Mcgovern KA, O'brien DF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilised liposomes. Biochemistry, 1998;37:12875–83.
  • Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm, 2000;198:29–38.
  • Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL, Mccluskey J, Yeo JP, Tock EP, Toh BH. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem, 1995;270:13503–11.
  • Navarro G, Essex S, Torchilin VP. 2013. The “non-viral” approach for siRNA delivery in cancer treatment: a special focus on micelles and liposomes. In: Erdmann VA, Barciszewski HJ, eds. RNA Technologies. Berlin: Springer-Verlag, pp. 241–61.
  • Nie Y, Ji L, Ding H, Xie L, Li L, He B, Wu Y, Gu Z. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterisation. Theranostics, 2012;2:1092–103.
  • Patel P, Shastri D, Shelat P, Shukla A. Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm, 2010;1:113.
  • Patil SD, Rhodes DG, Burgess DJ. Anionic liposomal delivery system for DNA transfection. AAPS J, 2004;6:13–22.
  • Pellinen P, Huhtala A, Tolonen A, Lokkila J, Mäenpää J, Uusitalo H. The cytotoxic effects of preserved and preservative-free prostaglandin analogues on human corneal and conjunctival epithelium in vitro and the distribution of benzalkonium chloride homologues in ocular surface tissues in vivo. Curr Eye Res, 2012;37:145–54.
  • Phillips N, Heydari C. Modulation of cationic liposomal DNA zeta potential and liposome‐protein interaction by amphiphilic poly (ethylene glycol). Pharm Pharmacol Commun, 1996;2:73–6.
  • Pleyer U, Grammer J, Pleyer J, Kosmidis P, Friess D, Schmidt K, Thiel H. [Amphotericin B–bioavailability in the cornea. Studies with local administration of liposome incorporated amphotericin B]. Ophthalmologe, 1995;92:469–75.
  • Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, Cavanagh HD, Jester JV. Characterisation of growth and differentiation in a telomerase-immortalised human corneal epithelial cell line. Invest Ophthalmol Visual Sci, 2005;46:470–8.
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release, 2010;145:182–95.
  • Shankardas J. 2008. Role of 14-3-3sigma in corneal epithelial differentiation. PhD thesis. Fort Worth: University of North Texas Health Science Centre.
  • Thassu D, Chader GJ. 2012. Ocular drug delivery systems: barriers and application of nanoparticulate systems. Boca Roton: CRC Press.
  • Torchilin VP. 2003. Liposomes: a practical approach. Oxford: Oxford University Press.
  • Toropainen E. 2007. Corneal epithelial cell culture model for pharmaceutical studies. PhD thesis. Kuopio: University of Kuopio.
  • Vivès E, Schmidt J, Pèlegrin A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochim et Biophys Acta, 2008;1786:126–38.
  • Yamaguchi M, Ueda K, Isowaki A, Ohtori A, Takeuchi H, Ohguro N, Tojo K. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biol Pharm Bull, 2009;32:1266–71.
  • Ye T, Yuan K, Zhang W, Song S, Chen F, Yang X, Wang S, Bi J, Pan W. Prodrugs incorporated into nanotechnology-based drug delivery systems for possible improvement in bioavailability of ocular drugs delivery. Asian J Pharm Sci, 2013;8:207–17.
  • Yeo Y. 2013. Nanoparticulate drug delivery systems: strategies, technologies, and applications. Hoboken: John Wiley & Sons.
  • Zhao YZ, Lu CT. Increasing the entrapment of protein-loaded liposomes with a modified freeze-thaw technique: a preliminary experimental study. Drug Dev Ind Pharm, 2009;35:165–71.
  • Zhaorigetu S, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G, Walton BL. Delivery of negatively charged liposomes into the atherosclerotic plaque of apolipoprotein E-deficient mouse aortic tissue. J liposome Res, 2014;24:182–90.
  • Zhigaltsev IV, Maurer N, Wong KF, Cullis PR. Triggered release of doxorubicin following mixing of cationic and anionic liposomes. Biochim Biophys Acta, 2002;1565:129–35.
  • Zhong Z, Shi S, Han J, Zhang Z, Sun X. Anionic liposomes increase the efficiency of adenovirus-mediated gene transfer to coxsackie-adenovirus receptor deficient cells. Mol Pharm, 2009;7:105–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.