175
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Development of a continuous reactor for emulsion-based microencapsulation of hexyl acetate with a polyuria shell

ORCID Icon, , , , , & show all
Pages 371-384 | Received 30 Nov 2018, Accepted 13 Jun 2019, Published online: 27 Jun 2019

References

  • Abrahamse, A.J., et al., 2002. Analysis of droplet formation and interactions during cross-flow membrane emulsification. Journal of membrane science, 204(1–2), 125–137. doi:10.1016/S0376-7388(02)00028-5
  • Abràmoff, M.D., Magalhães, P.J., and Ram, S.J., 2004. Image processing with imageJ. Biophotonics international, 11(7), 36–41.
  • Al Shannaq, R. and Farid, M.M., 2015. Microencapsulation of phase change materials (PCMs) for thermal energy storage systems. Advances in thermal energy storage systems. Swaston: Woodhead Publishing Limited.
  • Alič, B., Šebenik, U., and Krajnc, M., 2012. Microencapsulation of butyl stearate with melamineformaldehyde resin: effect of decreasing the pH value on the composition and thermal stability of microcapsules. Express polymer letters, 6(10), 826–836. doi:10.3144/expresspolymlett.2012.88
  • Azizi, F. and Al Taweel, A.M.M., 2011a. Hydrodynamics of liquid flow through screens and screen-type static mixers. Chemical engineering communications, 198(5), 726–742. doi:10.1080/00986445.2011.532748
  • Azizi, F. and Taweel, A.M.A., 2011b. Turbulently flowing liquid–liquid dispersions. Part I: drop breakage and coalescence. Chemical engineering journal, 166(2), 715–725. doi:10.1016/j.cej.2010.11.050
  • Bansode, S.S., et al., 2012. Microencapsulation : a review. International journal of pharmaceutical sciences review and research, 1(2), 509–531.
  • Das, M.D., Hrymak, A.N., and Baird, M.H.I., 2013. Laminar liquid–liquid dispersion in the SMX static mixer. Chemical engineering science, 101, 329–344. doi:10.1016/j.ces.2013.06.047
  • Das, P.K., et al., 2005. Drop breakage model in static mixers at low and intermediate Reynolds number. Chemical engineering science 60, 231–238. doi:10.1016/j.ces.2004.08.003
  • Dobetti, L. and Pantaleo, V., 2002. Application of a hydrodynamic model to microencapsulation by coacervation. Journal of microencapsulation, 19(2), 139–151. doi:10.1080/02652040110055199
  • Farzi, G.A., Rezazadeh, N., and Nejad, A.P., 2016. Droplet formation study in emulsification process by KSM using a novel in situ visualization system. Journal of dispersion science and technology, 37(4), 575. doi:10.1080/01932691.2015.1052144
  • Farzi, G., Mortezaei, M., and Badiei, A., 2010. Relationship between droplet size and fluid flow characteristics in miniemulsion polymerization of methyl methacrylate. Journal of applied polymer science 120(3), 1591–1596.
  • Fradette, L., et al., 2007. Liquid/liquid viscous dispersions with a smx static mixer. Chemical engineering research and design, 85(3), 395–405. doi:10.1205/cherd06206
  • Gupta, A. and Dey, B., 2013. Microencapsulation for controlled drug delivery: a comprehensive review. Sunsari technical college journal, 1(1), 48–54. doi:10.3126/stcj.v1i1.8660
  • Hall, S., et al., 2011. Scaling up of silverson rotor–stator mixers. The Canadian journal of chemical engineering 89(October), 1040–1050. doi:10.1002/cjce.20556
  • Hessel, V., 2009. Process windows: gate to maximizing process intensification via flow chemistry. Chemical engineering and technology, 32(11), 1655–1681. doi:10.1002/ceat.200900474
  • Hobbs, D.M. and Muzzio, F.J., 1997. The Kenics static mixer: a three-dimensional chaotic flow. Chemical engineering journal, 67(3), 153–166. doi:10.1016/S1385-8947(97)00013-2
  • Hobbs, D.M. and Muzzio, F.J., 1998. Reynolds number effects on laminar mixing in the Kenics static mixer. Chemical engineering journal, 70(2), 93–104. doi:10.1016/S0923-0467(98)00065-7
  • Hweij, K.A. and Azizi, F., 2015. Hydrodynamics and residence time distribution of liquid flow in tubular reactors equipped with screen-type static mixers. Chemical engineering journal, 279, 948–963. doi:10.1016/j.cej.2015.05.100
  • Jensen, K., 2001. Microreaction engineering—is small better? Chemical engineering science, 56(2), 293–303. doi:10.1016/S0009-2509(00)00230-X
  • Jeong, H.H., Issadore, D., and Lee, D., 2016. Recent developments in scale-up of microfluidic emulsion generation via parallelization. Korean journal of chemical engineering, 33(6), 1757–1766. doi:10.1007/s11814-016-0041-6
  • Jyothi, N.V.N., et al., 2010. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of microencapsulation, 27(3), 187–197. doi:10.3109/02652040903131301
  • Kiss, N., et al., 2011. Formation of O/W emulsions by static mixers for pharmaceutical applications. Chemical engineering science, 66(21), 5084–5094. doi:10.1016/j.ces.2011.06.065
  • Klutz, S., et al., 2015. Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chemical engineering research and design: institution of chemical engineers, 95, 22–33. doi:10.1016/j.cherd.2015.01.003
  • Kondo, A. and van Valkenburg, W., 1979. Microcapsule processing and technology. New York: Dekker.
  • Leal-Calderon, F., Schmitt, V., and Bibette, J., 2007. Emulsion science, basic principles. New York: Springer Science + Business Media
  • Legrand, J. , Morancais, P. and Carnelle, G., 2001. Liquid–liquid dispersion in an SMX-Sulzer static miXer. The institution of chemical engineers, Vol. 79, Part A..
  • Levenspiel, O., 1999. Chemical reaction engineering. 3rd ed. New York: Chemical Engineering Science.
  • Lobry, E., et al., 2011. Turbulent liquid–liquid dispersion in SMV static mixer at high dispersed phase concentration. Chemical engineering science, 66(23), 5762–5774. doi:10.1016/j.ces.2011.06.073
  • Martín, M.J., et al., 2015. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative food science and emerging technologies, 27, 15–25. doi:10.1016/j.ifset.2014.09.010
  • Martin-Banderas, L., Ganan-Calvo, a. M., and Fernandez-Arevalo, M., 2010. Making drops in microencapsulation processes. Letters in drug design and discovery, 7(4), 300–309. doi:10.2174/157018010790945760
  • Meijer, H.E.H., Singh, M.K., and Anderson, P.D., 2012. Progress in polymer science on the performance of static mixers : a quantitative comparison. Progress in polymer science, 37(10), 1333–1349. doi:10.1016/j.progpolymsci.2011.12.004
  • Merline, D.J., Vukusic, S., and Abdala, A.A., 2013. Melamine formaldehyde: curing studies and reaction mechanism. Polymer journal, 45(4), 413–419. doi:10.1038/pj.2012.162
  • Nesterova, T., Dam-Johansen, K., and Kiil, S., 2011. Progress in organic coatings synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Progress in organic coatings, 70(4), 342–352. doi:10.1016/j.porgcoat.2010.09.032
  • Nesterova, T., et al., 2012. Progress in Organic Coatings Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing. Progress in organic coatings, 75(4), 309–318. doi:10.1016/j.porgcoat.2012.08.002
  • Neves, M.A., et al., 2008. Formulation of controlled size pufa-loaded oil-in-water emulsions by microchannel emulsification using-carotene-rich palm oil. Industrial & engineering chemistry research, 47, 6405–6411. doi:10.1021/ie071552u
  • Nguyen, L.T., et al., 2015. Efficient microencapsulation of a liquid isocyanate with in situ shell functionalization. Polymer chemistry, 6(7), 1159–1170. doi:10.1039/C4PY01448K
  • Nisisako, T., and Torii, T., 2008. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab on a chip, 8, 287–293. doi:10.1039/B713141K
  • Nisisako, T., Torii, T., and Higuchi, T., 2002. Droplet formation in a microchannel network. Lab on a chip, 2, 24–26. doi:10.1039/B108740C
  • Ofner, A., et al., 2017. High-throughput step emulsification for the production of functional materials using a glass microfluidic device. Macromolecular chemistry and physics, 218(2), 1600472. doi:10.1002/macp.201600472
  • Paul, E.L., Atiemo-Obeng, V.A., and Kresta, S.M., 2004. Handbook of industrial mixing. Hoboken: Wiley.
  • Rodrigues, S.N., et al., 2009. Scentfashion(R): microencapsulated perfumes for textile application. Chemical engineering journal, 149(1–3), 463–472. doi:10.1016/j.cej.2009.02.021
  • Schrooyen, P.M., van der Meer, R., and De Kruif, C.G., 2001. Microencapsulation: its application in nutrition. Proceedings of the nutrition society, 60(4), 475–479. doi:10.1079/PNS2001112
  • Singh, M.N., et al., 2010. Microencapsulation: a promising technique for controlled drug delivery. Research in pharmaceutical sciences, 5(2), 65–77.
  • Sugiura, S., Nakajima, M., and Seki, M., 2002. Effect of channel structure on microchannel emulsification. Langmuir, 18(15), 5708–5712. doi:10.1021/la025813a
  • Thakur, R., Vial, C., and Nigam, K., 2003. Static mixers in the process industries—a review. Research and design, 81(7), 787–826.
  • Then, S., Seng Neon, G., and Abu Kasim, N.H., 2011. Optimization of microencapsulation process for self-healing polymeric material. Sains Malaysiana 40(7), 795–802.
  • Theron, F. and Sauze, N.L., 2011. Comparison between three static mixers for emulsification in turbulent flow. International journal of multiphase flow, 37(5), 488–500. doi:10.1016/j.ijmultiphaseflow.2011.01.004
  • Theron, F., et al., 2012. Transposition from a batch to a continuous process for microencapsulation by interfacial polycondensation. Chemical engineering and processing: process intensification, 54, 42–54. doi:10.1016/j.cep.2012.01.001
  • Theron, F., Le Sauze, N., and Ricard, A., 2010. Turbulent liquid–liquid dispersion in sulzer SMX mixer. Industrial and engineering chemistry research, 49, 623–632. doi:10.1021/ie900090d
  • Tucker, C. L. III. and Moldenaers, P. 2002. Microstructural evolution in polymer blends. Annual review of fluid mechanics, 34, 177–210. doi:10.1146/annurev.fluid.34.082301.144051
  • Vladisavljević, G.T., Kobayashi, I., and Nakajima, M., 2012. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics and nanofluidics, 13(1), 151–178. doi:10.1007/s10404-012-0948-0
  • Wagdare, N.A., et al., 2010. High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. Journal of membrane science, 347(1–2), 1–7. doi:10.1016/j.memsci.2009.09.057
  • Wiles, C. and Watts, P., 2008. Continuous flow reactors, a tool for the modern synthetic chemist. European journal of organic chemistry, 2008(10), 1655–1671. doi:10.1002/ejoc.200701041
  • Wischke, C., et al., 2006. Preparation of protein loaded poly (d,l-lactide-co-glycolide) microparticles for the antigen delivery to dendritic cells using a static micromixer. European journal of pharmaceutics and biopharmaceutics 62, 247–253. doi:10.1016/j.ejpb.2005.08.015
  • Wu, D.Y., Meure, S., and Solomon, D., 2008. Self-healing polymeric materials: a review of recent developments. Progress in polymer science, 33(5), 479–522. doi:10.1016/j.progpolymsci.2008.02.001
  • Yamazaki, N., et al., 2002. A comparison of membrane emulsification obtained using SPG (Shirasu Porous Glass) and PTFE [Poly(Tetrafluoroethylene)] membranes. Journal of dispersion science and technology, 23(1–3), 279–292. doi:10.1080/01932690208984204
  • Yuyama, H., et al., 2000. Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique. Colloids and surfaces A: physicochemical and engineering aspects, 168(2), 159–174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.