170
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Nanoparticle-loaded microcapsules providing effective UV protection for Cry1Ac

, , , &
Pages 522-532 | Received 23 Mar 2021, Accepted 04 Oct 2021, Published online: 19 Oct 2021

References

  • Anal, A.K. and Singh, H., 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food science & technology, 18 (5), 240–251.
  • Aronson, A., 2002. Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cellular and molecular life sciences, 59 (3), 417–425.
  • Ayyub, P., et al., 1988. Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. Journal of physics C: solid state physics, 21 (11), 2229–2245.
  • Bashir, O., et al., 2016. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops. PeerJ, 4, e2524.
  • Becker, N., 2000. Bacterial control of vector-mosquitoes and black flies. In: Entomopathogenic bacteria: from laboratory to field application. Dordrecht: Springer, 383–398.
  • Brar, S.K., et al., 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process biochemistry, 41 (2), 323–342.
  • Bravo, A., et al., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology, 41 (7), 423–431.
  • Buzea, C., Pacheco, I.I., and Robbie, K., 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2 (4), MR17–MR71.
  • Cai, L., et al., 2015. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS sustainable chemistry & engineering, 3 (10), 2551–2557.
  • Cuenot, S., et al., 2004. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical review B, 69 (16), 165410.
  • Cui, Y., Tian, M., and Shao, Z., 1993. Effect of ultraviolet rays on the activity of parasporal crystal of Bacillus thuringiensis. Microbiology, 20 (4), 193–195.
  • De Maagd, R.A., Bravo, A., and Crickmore, N., 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in genetics, 17 (4), 193–199.
  • Erdem, N., et al., 2010. Structural and ultraviolet‐protective properties of nano‐TiO2‐doped polypropylene filaments. Journal of applied polymer science, 115 (1), 152–157.
  • Fan, C., et al., 2017. Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of Kasugamycin. Carbohydrate polymers, 172, 322–331.
  • Feng, G., et al., 2019. Fabrication of ZnO coated nano-TiO2 and evaluation of its efficiency in stabilization of polypropylene fibers. Applied physics A, 125 (5), 1–9.
  • Gindin, G., et al., 2007. Environmental persistence of Bacillus thuringiensis products tested under natural conditions against Thaumetopoea wilkinsoni. Phytoparasitica, 35 (3), 255–263.
  • Han, W., et al., 1997. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 277 (5330), 1287–1289.
  • He, X., et al., 2017. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Applied microbiology and biotechnology, 101 (7), 2779–2789.
  • Ignoffo, C.M., 1992. Environmental factors affecting persistence of entomopathogens. The Florida entomologist, 75 (4), 516–525.
  • Jiang, L., et al., 2016. Preparation and characterization of nano-sized TiO2@chitosan for bone tissue engineering. Journal of international translational medicine, 4, 248–257.
  • Khorramvatan, S., et al., 2014. The effect of polymers on the stability of microencapsulated formulations of Bacillus thuringiensis subsp. kurstaki (Bt-KD2) after exposure to ultra violet radiation. Biocontrol science and technology, 24 (4), 462–472.
  • Kim, T., et al., 2007. Receptor-mediated gene delivery using chemically modified chitosan. Biomedical materials, 2 (3), S95–S100.
  • Kumar, S., et al., 2019. Nano-based smart pesticide formulations: emerging opportunities for agriculture. Journal of controlled release, 294, 131–153.
  • Li, C., Wu, M., and Wang, H., 2012. LC50 calculated by Kochi, Probit analysis and linear regression methods. Progress in veterinary medicine, 33, 89–92.
  • Li, J., et al., 2015. Fabrication of robust superhydrophobic bamboo based on ZnO nanosheet networks with improved water-, UV-, and fire-resistant properties. Journal of nanomaterials, 2015, 1–9.
  • Liufu, S., Xiao, H., and Li, Y., 2004. Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder technology, 145 (1), 20–24.
  • Luo, K., Banks, D., and Adang, M.J., 1999. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 delta-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Applied and environmental microbiology, 65 (2), 457–464.
  • Muzzarelli, R.A., 2009. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate polymers, 76 (2), 167–182.
  • Navon, A., 2000. Bacillus thuringiensis insecticides in crop protection—reality and prospects. Crop protection, 19 (8–10), 669–676.
  • Nguyen, H.M., et al., 2012a. Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. Journal of microencapsulation, 29 (6), 596–604.
  • Nguyen, H.M., et al., 2012b. Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest management science, 68 (7), 1062–1068.
  • Nguyen, M.-H., et al., 2016. Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy. Crop protection, 87, 25–30.
  • Ohji, T., et al., 1994. Tensile creep behavior of alumina/silicon carbide nanocomposite. Journal of the American ceramic society, 77 (12), 3259–3262.
  • Padilla, C., et al., 2006. Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis. Applied and environmental microbiology, 72 (1), 901–907.
  • Pan, X., et al., 2017. Adsorption of insecticidal crystal protein Cry11Aa onto nano-Mg(OH)2: effects on bioactivity and anti-ultraviolet ability. Journal of agricultural and food chemistry, 65 (43), 9428–9434.
  • Parker, M.W., and Feil, S.C., 2005. Pore-forming protein toxins: from structure to function. Progress in biophysics and molecular biology, 88 (1), 91–142.
  • Pozsgay, M., et al., 1987. The effect of sunlight on the protein crystals from Bacillus thuringiensis var. kurstaki HD1 and NRD12: a Raman spectroscopic study. Journal of invertebrate pathology, 50 (3), 246–253.
  • Prasad, R., Kumar, V., and Prasad, K., 2014. Nanotechnology in sustainable agriculture: present concerns and future aspects. African journal of biotechnology, 13 (6), 705–713.
  • Pusztai, M., et al., 1991. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochemical journal, 273 (1), 43–47.
  • Qi, D., et al., 2011. Effect of the crystal of nano-TiO2 on the performances of finished cotton fabric. Journal of textile research, 32, 88–92.
  • Rao, W., et al., 2018. Flowerlike Mg(OH)2 cross-nanosheets for controlling Cry1Ac protein loss: evaluation of insecticidal activity and biosecurity. Journal of agricultural and food chemistry, 66 (14), 3651–3657.
  • Reicha, F.M., et al., 2012. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate polymers, 89 (1), 236–244.
  • Reyes-Coronado, D., et al., 2008. Phase-pure TiO(2) nanoparticles: anatase, brookite and rutile. Nanotechnology, 19 (14), 145605.
  • Roduner, E., 2006. Size matters: why nanomaterials are different. Chemical society reviews, 35 (7), 583–592.
  • Salla, J., Pandey, K.K., and Srinivas, K., 2012. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polymer degradation and stability, 97 (4), 592–596.
  • Sanahuja, G., et al., 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant biotechnology journal, 9 (3), 283–300.
  • Sanchis, V., and Bourguet, D., 2008. Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agronomy for sustainable development, 28 (1), 11–20.
  • Sauter, C., et al., 2008. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrasonics sonochemistry, 15 (4), 517–523.
  • Soberón, M., et al., 2007. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon, 49 (5), 597–600.
  • Soberon, M., Gill, S., and Bravo, A., 2009. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and molecular life sciences, 66 (8), 1337–1349.
  • Vachon, V., Laprade, R., and Schwartz, J.-L., 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. Journal of invertebrate pathology, 111 (1), 1–12.
  • Van Frankenhuyzen, K., 2000. Application of Bacillus thuringiensis in forestry. In: Entomopathogenic bacteria: from laboratory to field application. Dordrecht: Springer, 371–382.
  • Vilas-Bôas, G.T., Peruca, A.P.S., and Arantes, O.M.N., 2007. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian journal of microbiology, 53 (6), 673–687.
  • Wang, L., et al., 2011. Superhydrophobic and ultraviolet-blocking cotton textiles. ACS applied materials & interfaces, 3 (4), 1277–1281.
  • Wang, Q., Xia, H., and Zhang, C., 2001a. Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation. Journal of applied polymer science, 80 (9), 1478–1488.
  • Wang, W., et al., 2001b. The inactivation of Bacillus thuringiensis parasporal crystals by ultraviolet and the protective action of humic acids. Acta phytophylacica sinica, 28, 49–54.
  • Wang, X., et al., 2007. Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour. Carbohydrate polymers, 69 (1), 41–49.
  • Weichelt, F., et al., 2010. ZnO-based UV nanocomposites for wood coatings in outdoor applications. Macromolecular materials and engineering, 295 (2), 130–136.
  • Wilhelm, P., and Stephan, D., 2007. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. Journal of photochemistry and photobiology A: chemistry, 185 (1), 19–25.
  • Zhang, L., et al., 2019. Growing nano-sio2 on the surface of aramid fibers assisted by supercritical CO2 to enhance the thermal stability, interfacial shear strength, and UV resistance. Polymers, 11 (9), 1397.
  • Zhang, T., et al., 2014. Inheritance patterns, dominance and cross-resistance of Cry1Ab- and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins, 6 (9), 2694–2707.
  • Zhang, Z., et al., 2000. Nanometer materials & nanotechology and their application prospect. Journal of materials engineering, (3), 42–48.
  • Zhou, C., et al., 2014. Screening of cry-type promoters with strong activity and application in Cry protein encapsulation in a sigK mutant. Applied microbiology and biotechnology, 98 (18), 7901–7909.
  • Zhou, X., et al., 2007. Adsorption and insecticidal activity of toxin from Bacillus thuringiensis on rectorite. Pedosphere, 17 (4), 513–521.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.