383
Views
3
CrossRef citations to date
0
Altmetric
Reviews

The nanotechnological approach for nasal delivery of peptide drugs: a comprehensive review

ORCID Icon &
Pages 156-175 | Received 14 Oct 2021, Accepted 07 Mar 2022, Published online: 30 Mar 2022

References

  • Agu, R.U., 2016. Challenges in nasal drug absorption: how far have we come? Therapeutic delivery, 7 (7), 495–510.
  • Ahmad, M.U., Ali, S.M., and Ahmad, I., 2012. Applications of nanotechnology in pharmaceutical development. In: M.U. Ahmad, ed. Lipids in Nanotechnology. Libertyville (IL): Elsevier, 171–190.
  • Akashi, M. and Ikizawa, K., 2007. Biodegradable nanoparticle having cedar pollen T-cell recognizable epitope peptide immobilized thereon or encapsulated therein. Pharmaceuticals. US Patent No. 20090156480A1. In: Section title: pharmaceuticals (US20090156480A1).
  • al Bakri, W., et al., 2018. Overview of intranasally delivered peptides: key considerations for pharmaceutical development. Expert opinion on drug delivery, 15 (10), 991–1005.
  • Amirnasr, M., et al., 2016. Immunization against HTLV-I with chitosan and tri-methylchitosan nanoparticles loaded with recombinant env23 and env13 antigens of envelope protein gp46. Microbial pathogenesis, 97, 38–44.
  • Aneja, R., et al., 2019. Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. Journal of peptide science, 25 (4), e3155.
  • Ariën, A., and Stoffels, P., 2016. History: potential, challenges, and future development in nanopharmaceutical research and industry. In: J. Cornier, A. Owen, A. Kwade, and M. van de Voorde, eds. Pharmaceutical nanotechnology: innovation and production. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 1–16.
  • Avila, C.L., et al., 2017. Lessons learned from protein aggregation: toward technological and biomedical applications. Biophysical reviews, 9 (5), 501–515.
  • Azegami, T., et al., 2018. Intranasal vaccination against angiotensin II type 1 receptor and pneumococcal surface protein A attenuates hypertension and pneumococcal infection in rodents. Journal of hypertension, 36 (2), 387–394.
  • Azegami, T., et al., 2017. Nanogel-based nasal ghrelin vaccine prevents obesity. Mucosal immunology, 10 (5), 1351–1360.
  • Barros, C.D., et al., 2021. Quality by design approach for the development of liposome carrying ghrelin for intranasal administration. Pharmaceutics, 13 (5), 686.
  • Baxter, R.P., et al., 2018. Live attenuated influenza vaccination before 3 years of age and subsequent development of Asthma: A 14-year follow-up study. The pediatric infectious disease journal, 37 (5), 383–386.
  • Behzadi, M., et al., 2021. Iron nanoparticles as novel vaccine adjuvants. European journal of pharmaceutical sciences, 159, 105718.
  • Ben-Yehuda, A., et al., 2003. Immunogenicity and safety of a novel IL-2-supplemented liposomal influenza vaccine (INFLUSOME-VAC) in nursing-home residents. Vaccine, 21 (23), 3169–3178.
  • Berrill, A., Biddlecombe, J., and Bracewell, D., 2011. Product quality during manufacture and supply. In: C.F. van der Walle, ed. Peptide and protein delivery. London, UK: Elsevier, 313–339.
  • Bhatia, S., 2017. Nanotechnology in drug delivery: fundamentals, design, and applications. 1st ed. New York, NY: Apple Academic Press.
  • Bhumkar, D.R., et al., 2007. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical research, 24 (8), 1415–1426.
  • Boge, L., et al., 2018. Freeze-dried and re-hydrated liquid crystalline nanoparticles stabilized with disaccharides for drug-delivery of the plectasin derivative AP114 antimicrobial peptide. Journal of colloid and interface science, 522, 126–135.
  • Borrajo, M.L., and Alonso, M.J., 2022. Using nanotechnology to deliver biomolecules from nose to brain: peptides, proteins, monoclonal antibodies and RNA. Drug delivery and translational research, 12 (4), 819–862.
  • Casal Alvarez, J. I., and Bartolomé Conde, R. Á., 2020. US2021363224A1 IL13Ra2 Peptide and its uses.
  • Chan, J., Rajadas, J., and Steinman, L., 2021. WO2021195580A1 Prevention and treatment of coronavirus-associated diseases using an apelin peptide and formulations thereof.
  • Chatterjee, B., et al., 2019. Targeted drug delivery to the brain via intranasal nanoemulsion: available proof of concept and existing challenges. International journal of pharmaceutics, 565, 258–268.
  • Cho, H.-J., et al., 2011. Evaluation of protein stability and in vitro permeation of lyophilized polysaccharides-based microparticles for intranasal protein delivery. International journal of pharmaceutics, 416 (1), 77–84.
  • Cho, W., et al., 2015. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes. International journal of pharmaceutics, 478 (1), 288–296.
  • ClinicalTrials.gov, 2011a. A study of oxytocin in children and adolescents with autistic disorder. University of North Carolina, Chapel Hill. United States, No. NCT01308749.
  • ClinicalTrials.gov, 2011b. Does acute oxytocin administration enhance social cognition in individuals with schizophrenia? VA Greater Los Angeles Healthcare System. United States, No. NCT01312272.
  • ClinicalTrials.gov, 2013. Nasally and subcutaneously administered teriparatide in healthy volunteers. Nottingham University Hospitals NHS Trust; Critical Pharmaceuticals. United Kingdom, No. NCT01913834.
  • ClinicalTrials.gov, 2015a. A study in participants with type 2 diabetes mellitus (AWARD-3). Eli Lilly and Company. Germany, No. NCT03339453.
  • ClinicalTrials.gov, 2015b. Memory aid by intranasal insulin in diabetes (MemAID). Beth Israel Deaconess Medical Center. United States, No. NCT02415556.
  • ClinicalTrials.gov, 2017a. PINIT study: primary intranasal insulin trial. München, Technische Universität. Germany, No. NCT03182322.
  • ClinicalTrials.gov, 2017b. Intranasal vasopressin treatment in children with autism. Stanford University. United States, No. NCT03204786.
  • ClinicalTrials.gov, 2018. Intranasal glucagon and energy balance. University Health Network, Toronto. Canada, No. NCT03650582.
  • Colombo, M., et al., 2018. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. International journal of pharmaceutics, 543 (1-2), 214–223.
  • Cornier, J., et al., 2016. Characterization methods: physical and chemical characterization techniques. In: J. Cornier, A. Owen, A. Kwade, and M. van de Voorde, eds. Pharmaceutical nanotechnology: innovation and production. Weinheim, DE: Wiley-VCH Verlag, 135–156.
  • de Souza Von Zuben, E., et al., 2021. Insulin-loaded liposomes functionalized with cell-penetrating peptides: influence on drug release and permeation through porcine nasal mucosa. Colloids and surfaces A: Physicochemical and engineering aspects, 622, 126624.
  • Dehghan, S., et al., 2018. Preparation, characterization and immunological evaluation of alginate nanoparticles loaded with whole inactivated influenza virus: dry powder formulation for nasal immunization in rabbits. Microbial pathogenesis, 115, 74–85.
  • Dhakal, S., et al., 2018. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. International journal of nanomedicine, 13, 6699–6715.
  • Dolberg, A.M., and Reichl, S., 2018. Expression analysis of human solute carrier (SLC) family transporters in nasal mucosa and RPMI 2650 cells. European journal of pharmaceutical sciences, 123, 277–294.
  • Dreijer-van der Glas, S., and Hafner, A., 2015. Nose. In: Y. Bouwman-Boer; V. Fenton-May; P. Le Brun, eds. Practical pharmaceutics. Cham, CH: Springer, 139–152.
  • Dumont, C., et al., 2018. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. International journal of pharmaceutics, 541 (1-2), 117–135.
  • Edwards, P. J., and LaPlante, S. R., 2011. Peptides as leads f or drug discovery. In: M. Castanho and N. Santos, eds. Peptide drug discovery and development. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 1–55.
  • El‐Kamary, S.S., et al., 2010. Adjuvanted intranasal Norwalk virus‐like particle vaccine elicits antibodies and antibody‐secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. The journal of infectious diseases, 202 (11), 1649–1658.
  • El-Mekawy, R.E. and Jassas, R.S., 2017. Recent trends in smart and flexible three-dimensional cross-linked polymers: synthesis of chitosan-ZnO nanocomposite hydrogels for insulin drug delivery. MedChemComm, 8 (5), 897–906.
  • Emami, A., et al., 2018. Toxicology evaluation of drugs administered via uncommon routes: intranasal, intraocular, intrathecal/intraspinal, and intra-articular. International journal of toxicology, 37 (1), 4–27.
  • Fahimirad, S., et al., 2021. Antimicrobial activity, stability and wound healing performances of chitosan nanoparticles loaded recombinant LL37 antimicrobial peptide. International journal of peptide research and therapeutics, 27 (4), 2505–2515.
  • Feng, Y., et al., 2018. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug discovery today, 23 (5), 1079–1088.
  • Ferreira, L.M.B., et al., 2018. Exploiting supramolecular interactions to produce bevacizumab-loaded nanoparticles for potential mucosal delivery. European polymer journal, 103, 238–250.
  • Fonseca, F.N., et al., 2015. Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine. Journal of biomedical nanotechnology, 11 (8), 1472–1481.
  • Frère, Y., Danicher, L., and Muller, S., 2013. Peptide nanostructured conjugates for therapeutics. In: C. Alemán, A. Bianco, and M. Venanzi, eds. Peptide materials. Chichester, UK: John Wiley & Sons, 385–415.
  • Garcia-Fuentes, M., Torres, D., and Alonso, M., 2005. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. International journal of pharmaceutics, 296 (1–2), 122–132.
  • Gaudana, R., et al., 2011. Encapsulation of protein-polysaccharide HIP complex in polymeric nanoparticles. Journal of drug delivery, 2011, 458127–458128.
  • Gebril, A.M., et al., 2014. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomedicine: nanotechnology, biology, and medicine, 10 (5), 971–e979.
  • Gill, N., Wlodarska, M., and Finlay, B.B., 2010. The future of mucosal immunology: studying an integrated system-wide organ. Nature immunology, 11 (7), 558–560.
  • Godfrey, L., et al., 2018. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia. Journal of controlled release, 270, 135–144.
  • Griesser, J., et al., 2017. Hydrophobic ion pairing: key to highly payloaded self-emulsifying peptide drug delivery systems. International journal of pharmaceutics, 520 (1–2), 267–274.
  • Guo, H., et al., 2021. Biodegradable nano-porous Mn3O4 with sustainable release for improving the stability and bioactivity of peptide RVPSL. LWT, 152, 112384.
  • Hu, C.M.J., and Yang, H.C., 2021. A vaccine comprising a nanoparticle encapsulating epitopes and adjuvant, a method for manufacturing the same, and a method for neutralizing virus infection. Patent No. TW202108169A.
  • Huang, Y., et al., 2020. RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of Alzheimer's disease. Neuropharmacology, 180, 108304.
  • Illum, L., 2015. Intranasal delivery to the central nervous system. In: L. Di and E.H. Kerns, eds. Blood-brain barrier in drug discovery. Hoboken, NJ: John Wiley & Sons, 535–565.
  • Ingrole, R.S.J., et al., 2021. M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine, 39 (34), 4800–4809.
  • Ismail, R., et al., 2020. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. European journal of pharmaceutics and biopharmaceutics, 152, 10–17.
  • Jain, A., et al., 2019. Thiolated polymers: pharmaceutical tool in nasal drug delivery of proteins and peptides. International journal of peptide research and therapeutics, 25 (1), 15–26.
  • Jallouk, A. P., et al., 2015. Modifications of natural peptides for nanoparticle and drug design. In: R. Donev, ed. Advances in protein chemistry and structural biology. Waltham, MA: Elsevier, 57–91.
  • Jean, M., et al., 2011. Effective and safe gene-based delivery of GLP-1 using chitosan/plasmid-DNA therapeutic nanocomplexes in an animal model of type 2 diabetes. Gene therapy, 18 (8), 807–816.
  • Jin, F., Lei, B., and Wen, C., 2010. Insulin nasal powder inhalation. Patent No. US20100292141A).
  • Kaplan, M., et al., 2018. Development and characterization of gels and liposomes containing ovalbumin for nasal delivery. Journal of drug delivery science and technology, 44, 108–117.
  • Khan, A.R., et al., 2017. Progress in brain targeting drug delivery system by nasal route. Journal of controlled release, 268, 364–389.
  • Khan, K., et al., 2018. Ursolic acid loaded intra nasal nano lipid vesicles for brain tumour: formulation, optimization, in-vivo brain/plasma distribution study and histopathological assessment. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 106, 1578–1585.
  • Koss, K., and Unsworth, L., 2018. Towards developing bioresponsive, self-assembled peptide materials: dynamic morphology and fractal nature of nanostructured matrices. Materials, 11 (9), 1539.
  • Lê, M.Q., et al., 2019. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: comparison with cationic or anionic nanoparticles. International journal of pharmaceutics: X, 1, 100001.
  • Lee, K. C., Park, C. W., and Kim, H. T., 2012. KR101112578B1 Pharmaceutical composition containing exendin for nasal administration and method for the preparation thereof.
  • Lee, S.H., et al., 2011. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. International journal of pharmaceutics, 403 (1–2), 192–200.
  • Lew, T.T.S., et al., 2021. Epitope-functionalized gold nanoparticles for rapid and selective detection of SARS-CoV-2 IgG antibodies. ACS nano, 15 (7), 12286–12297.
  • Li, H., et al., 2021. Self-assembling nanoparticle vaccines displaying the receptor binding domain of SARS-CoV-2 elicit robust protective immune responses in Rhesus monkeys. Bioconjugate chemistry, 32 (5), 1034–1046.
  • Li, S., et al., 2020. SARS-CoV2 mucosal immune vaccine and application thereof.
  • Lin, P., et al., 2019. Phase‐changeable nanoemulsions for oral delivery of a therapeutic peptide: toward targeting the pancreas for antidiabetic treatments using lymphatic transport. Advanced functional materials, 29 (13), 1809015.
  • Lin, S., et al., 2019. Surface assembly of poly(I:C) on polyethyleneimine‐modified gelatin nanoparticles as immunostimulatory carriers for mucosal antigen delivery. Journal of biomedical materials research part B: Applied biomaterials, 107 (4), 1228–1237.
  • Majcher, M.J., et al., 2021. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. Journal of controlled release, 330, 738–752.
  • Maraming, P., Daduang, J., and Kah, J.C.Y., 2022. Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC advances, 12 (1), 319–325.
  • Marasini, N., et al., 2016. Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. International journal of pharmaceutics, 513 (1–2), 410–420.
  • Marasini, N., Skwarczynski, M., and Toth, I., 2017. Intranasal delivery of nanoparticle-based vaccines. Therapeutic delivery, 8 (3), 151–167.
  • Markwalter, C.E., et al., 2020. Polymeric nanocarrier formulations of biologics using inverse flash nanoprecipitation. The AAPS journal, 22 (2), 18.
  • Martins, D.A., et al., 2020. Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nature communications, 11 (1), 1160.
  • Martins, S., et al., 2007. Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles. International journal of nanomedicine, 2 (4), 595–607.
  • Mas Oliva, J., et al., 2015. EP2868327A1 Nasal vaccine against the development of atherosclerosis disease and fatty liver.
  • Matougui, N., et al., 2016. Lipid-based nanoformulations for peptide delivery. International journal of pharmaceutics, 502 (1-2), 80–97.
  • Matougui, N., et al., 2019. A comparison of different strategies for antimicrobial peptides incorporation onto/into lipid nanocapsules. Nanomedicine, 14 (13), 1647–1662.
  • Mentzer, B., et al., 2020. A CGRP receptor antagonist peptide formulated for nasal administration to treat migraine. Journal of pharmacy and pharmacology, 72 (10), 1352–1360.
  • Miwa, T., et al., 2020. Intranasal drug delivery into mouse nasal mucosa and brain utilizing arginine-rich cell-penetrating peptide-mediated protein transduction. International journal of peptide research and therapeutics, 26 (3), 1643–1650.
  • Mohtashamian, S., Boddohi, S., and Hosseinkhani, S., 2018. Preparation and optimization of self-assembled chondroitin sulfate-nisin nanogel based on quality by design concept. International journal of biological macromolecules, 107 (Pt B), 2730–2739.
  • Morita, T., and Yamahara, H., 2010. Nasal delivery systems. In: M. Morishita and K. Park, eds. Biodrug delivery systems. Boca Raton, FL: CRC Press, 120–134.
  • Müller-Goymann, C. C., and Paranjpe, M., 2016. Nanodrugs in medicine and healthcare: pulmonary, nasal and ophthalmic routes, and vaccination. In: J. Cornier, A. Owen, A. Kwade, and M. van de Voorde, eds. Pharmaceutical Nanotechnology: Innovation and Production. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 633–648.
  • Nakao, Y., et al., 2016. LARETH-25 and β-CD improve central transitivity and central pharmacological effect of the GLP-2 peptide. International journal of pharmaceutics, 515 (1-2), 37–45.
  • Natsheh, H., and Touitou, E., 2018. Phospholipid magnesome – a nasal vesicular carrier for delivery of drugs to brain. Drug delivery and translational research, 8 (3), 806–819.
  • Neamtu, I., et al., 2017. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug delivery, 24 (1), 539–557.
  • Newman, S.P., Pitcairn, G.R., and Dalby, R.N., 2004. Delivery to the nasal cavity: in vitro and in vivo assessment. Critical reviews in therapeutic drug carrier systems, 21 (1), 46–66.
  • Nguyen, J.-T., and Kiso, Y., 2015. Delivery of peptide drugs. In: B.M. Dunn, ed. Peptide chemistry and drug design. Hoboken, NJ: John Wiley & Sons, Inc, 271–310.
  • Niu, Z., et al., 2018. PEG-PGA enveloped octaarginine-peptide nanocomplexes: an oral peptide delivery strategy. Journal of controlled release, 276, 125–139.
  • Ozsoy, Y., Gungor, S., and Cevher, E., 2009. Nasal delivery of high molecular weight drugs. Molecules (basel, Switzerland), 14 (9), 3754–3779.
  • Patel, A., et al., 2014. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein and peptide letters, 21 (11), 1102–1120.
  • Patil, S., et al., 2015. Role of nanotechnology in delivery of protein and peptide drugs. Current pharmaceutical design, 21 (29), 4155–4173.
  • Picone, P., et al., 2018. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. Journal of controlled release, 270, 23–36.
  • Pinto Reis, C., et al., 2006. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine: nanotechnology, biology, and medicine, 2 (2), 53–65.
  • Porfiryeva, N.N., et al., 2021. Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. Nanomedicine : nanotechnology, biology, and medicine, 37, 102432.
  • Prasher, P., and Sharma, M., 2021. Mucoadhesive nanoformulations and their potential for combating COVID-19. Nanomedicine, 16 (28), 2497–2501.
  • Prego, C., Torres, D., and Alonso, M.J., 2006. Chitosan nanocapsules: a new carrier for nasal peptide delivery. Journal of drug delivery science and technology, 16 (5), 331–337.
  • Qiu, F., et al., 2018. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials, 182, 82–91.
  • Ramvikas, M., et al., 2017. Nasal vaccine delivery. In: M. Skwarczynski and I. Toth, eds. Micro and nanotechnology in vaccine development. Oxford, UK: Elsevier, 279–301.
  • Renu, S., and Renukaradhya, G.J., 2020. Chitosan nanoparticle based mucosal vaccines delivered against infectious diseases of poultry and pigs. Frontiers in bioengineering and biotechnology, 8, 558349.
  • Rezaei, N., et al., 2020. Encapsulation of an endostatin peptide in liposomes: stability, release, and cytotoxicity study. Colloids and surfaces B: Biointerfaces, 185, 110552.
  • Roesti, E.S., et al., 2020. Vaccination against amyloidogenic aggregates in pancreatic islets prevents development of type 2 diabetes mellitus. Vaccines, 8 (1), 116.
  • Rolando Alberto, R.-F., et al., 2020. In silico and in vivo studies of gp120-HIV-derived peptides in complex with G4-PAMAM dendrimers. RSC advances, 10 (35), 20414–20426.
  • Rosales-Mendoza, S., and González-Ortega, O., 2019a. Gold-based mucosal nanovaccines. In: S. Rosales-Mendoza and O. González-Ortega, eds. Nanovaccines: an innovative technology to fight human and animal diseases. Cham: Springer International Publishing, 37–60.
  • Rosales-Mendoza, S., and González-Ortega, O., 2019b. Silica-based mucosal nanovaccines. In: S. Rosales-Mendoza and O. González-Ortega, eds. Nanovaccines. Cham: Springer International Publishing, 105–130.
  • Sachdeva, S., 2017. Peptides as ‘drugs’: the journey so far. International journal of peptide research and therapeutics, 23 (1), 49–60.
  • Saeedi Saravi, S.S., and Beer, J.H., 2020. Apelin-potential therapy for COVID-19? Journal of molecular and cellular cardiology, 145, 84–87.
  • Saindane, N.S., Pagar, K.P., and Vavia, P.R., 2013. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech, 14 (1), 189–199.
  • Samaridou, E., and Alonso, M.J., 2018. Nose-to-brain peptide delivery - the potential of nanotechnology. Bioorganic & medicinal chemistry, 26 (10), 2888–2905.
  • Samaridou, E., et al., 2020. Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials, 230, 119657.
  • Sarmento, B., Ferreira, D., and Vasconcelos, T. T., 2009. Polymer-based delivery systems for oral delivery of peptides and proteins. In: H. Jorgensen and L. Nielsen, eds. Delivery technologies for biopharmaceuticals. Chichester, UK: John Wiley & Sons, 207–226.
  • Schulze, K., et al., 2017. Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomedicine: nanotechnology, biology, and medicine, 13 (8), 2463–2474.
  • Shahnaz, G., et al., 2012. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. International journal of pharmaceutics, 428 (1–2), 164–170.
  • Si, Y., et al., 2018. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. Journal of controlled release, 282, 120–130.
  • Simon, M., et al., 2005. Insulin containing nanocomplexes formed by self-assembly from biodegradable amine-modified poly(vinyl alcohol)-graft-poly(l-lactide): bioavailability and nasal tolerability in rats. Pharmaceutical research, 22 (11), 1879–1886.
  • Sintov, A.C., Levy, H. v., and Botner, S., 2010. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. Journal of controlled release, 148 (2), 168–176.
  • Sonvico, F., et al., 2018. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics, 10 (1), 34.
  • Sosnik, A., 2016. Tissue-based in vitro and ex vivo models for nasal permeability studies. In: B. Sarmento, ed. Concepts and models for drug permeability studies. Cambridge, UK: Elsevier, 237–254.
  • Sun, H., et al., 2020. Use of palmitate modified IKVAV in preparation of vaccine T-cell epitope peptide coupling agent and in preparation of anti-tumor nanoemulsion adjuvant nasal mucosal vaccine.
  • Sung, H., Liang, H.-F., and Tu, H., 2011. US7871990B1 Nanoparticles for protein drug delivery.
  • Mak, T.W., Saunders, M.E., and Jett, B.D.B.T., 2014. Mucosal and cutaneous immunity. In: T.W. Mak, M.E. Saunders, and B.D.B.T. Jett, eds. Primer to the immune response. Boston, MA: Elsevier, 269–292.
  • Takeuchi, H., et al., 2020. Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. NPJ vaccines, 5 (1), 28.
  • Tanaka, N., et al., 2020. Development of a brain-permeable peptide nanofiber that prevents aggregation of Alzheimer pathogenic proteins. PLOS one, 15 (7), e0235979.
  • Tang, C., et al., 2017. An innovative method for preparation of hydrophobic ion-pairing colistin entrapped poly(lactic acid) nanoparticles: loading and release mechanism study. European journal of pharmaceutical sciences, 102, 63–70.
  • Teekamp, N., et al., 2015. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert opinion on drug delivery, 12 (8), 1311–1331.
  • Thwala, L.N., et al., 2016. The interaction of protamine nanocapsules with the intestinal epithelium: a mechanistic approach. Journal of controlled release, 243, 109–120.
  • Tomono, T., et al., 2020. Nasal absorption enhancement of protein drugs independent to their chemical properties in the presence of hyaluronic acid modified with tetraglycine-L-octaarginine. European journal of pharmaceutics and biopharmaceutics, 154, 186–194.
  • Tripathi, S., et al., 2021. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. Journal of microencapsulation, 38 (7–8), 572–593.
  • Uhlig, T., et al., 2014. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA open proteomics, 4, 58–69.
  • van der Walle, C. F., and Olejnik, O., 2011. An overview of the field of peptide and protein delivery. In: C. van der Walle, ed. Peptide and protein delivery. Boston, MA: Elsevier, 1–22.
  • Vauthier, C., 2016. Polymer nanoparticles for in vivo applications: progress on preparation methods and future challenges. In: C. Vauthier and G. Ponchel, eds. Polymer nanoparticles for nanomedicines. Cham (CH): Springer, 3–16.
  • Verified Market Research, 2021. Global peptide therapeutics market size by application, by route of administration, by synthesis technology, by geographic scope and forecast [online]. Available from: https://www.verifiedmarketresearch.com/product/peptide-therapeutics-market/ [Accessed 2 Mar 2021].
  • Vo, T. P., et al., 2015. Emerging trends in delivery of novel vaccine formulations. In: M.J. D'Souza, ed. Nanoparticulate vaccine delivery systems. 1st ed. New York, NY: Jenny Stanford Publishing.
  • Wang, W., and Roberts, C. J., 2010. Aggregation of therapeutic proteins. Aggregation of therapeutic proteins. Hoboken, NJ: John Wiley & Sons.
  • Wang, Y., et al., 2014. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine, 9 (4), 451–464.
  • Whateley, T.L., 2002. Drug delivery and targeting; for pharmacists and pharmaceutical scientists. Journal of drug targeting, 10 (8), 637–637.
  • World Health Organization, 2021. COVID-19 vaccine tracker and landscape (Landscape of novel coronavirus candidate vaccine development worldwide). Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
  • Wright, J., 2007. Overview of protein formulation and delivery. In: E. McNally and J.E. Hastedt, eds. Protein formulation and delivery. Boca Raton, FL: CRC Press, 19–24.
  • Yang, Y., et al., 2019. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. Journal of nanobiotechnology, 17 (1), 6.
  • Yang, Y., et al., 2021. A novel self-assembled epitope peptide nanoemulsion vaccine targeting nasal mucosal epithelial cell for reinvigorating CD8+ T cell immune activity and inhibiting tumor progression. International journal of biological macromolecules, 183, 1891–1902.
  • Ye, C., and Venkatraman, S., 2019. The long-term delivery of proteins and peptides using micro/nanoparticles: overview and perspectives. Therapeutic delivery, 10 (5), 269–272.
  • Yeomans, D. C., Carson, D., and Thirucote, R., 2021. AU2020286221A1 Magnesium-containing oxytocin formulations and methods of use.
  • Yordanova, Y., et al., 2018. Zn2+-triggered self-assembly of gonadorelin [6-D-Phe] to produce nanostructures and fibrils. Scientific reports, 8 (1), 11280.
  • Yu, S., et al., 2019. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. International journal of pharmaceutics, 560, 282–293.
  • Yuan, H., et al., 2009. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids and surfaces. B, biointerfaces, 70 (2), 248–253.
  • Yuba, E., and Kono, K., 2014. Nasal delivery of biopharmaceuticals. In: J. das Neves and B. Sarmento, eds. Mucosal delivery of biopharmaceuticals. Boston, MA: Springer, 197–220.
  • Zada, M.H., et al., 2019. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). Journal of controlled release, 295, 278–289.
  • Zheng, C., et al., 2013. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. European journal of pharmaceutical sciences, 49 (4), 474–482.
  • Zhou, X.-R., et al., 2017. Self-assembly nanostructure controlled sustained release, activity and stability of peptide drugs. International journal of pharmaceutics, 528 (1–2), 723–731.
  • Zuglianello, C., et al., 2021. Dextran sulfate/pramlintide polyelectrolyte nanoparticles as a promising delivery system: optimization, evaluation of supramolecular interactions and effect on conformational stability of the peptide drug. Journal of the Brazilian chemical society, 32 (8), 1642–1653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.