50
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis

& ORCID Icon
Received 27 Jan 2024, Accepted 25 Jun 2024, Published online: 05 Jul 2024

References

  • WHO. 2023. WHO data on Osteoarthritis Prevalence [Online]. World Health Organization (WHO). Available: https://www.who.int/news-room/fact-sheets/detail/osteoarthritis [Accessed].
  • Abd-Allah, H., Kamel, A.O., and Sammour, O.A., 2016. Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: Optimization and in vivo evaluation. Carbohydrate polymers, 149, 263–273. doi: 10.1016/j.carbpol.2016.04.096.
  • Abou-Elnour, M., et al., 2019. Triamcinolone acetonide-loaded PLA/PEG-PDL microparticles for effective intra-articular delivery: synthesis, optimization, in vitro and in vivo evaluation. Journal of controlled release: official journal of the controlled release society, 309, 125–144. doi: 10.1016/j.jconrel.2019.07.030.
  • Allen, K., Thoma, L., and Golightly, Y., 2022. Epidemiology of osteoarthritis. Osteoarthritis and cartilage, 30 (2), 184–195. doi: 10.1016/j.joca.2021.04.020.
  • Alqahtani, M.S., et al., 2021. Advances in oral drug delivery. Frontiers in pharmacology, 12, 618411. doi: 10.3389/fphar.2021.618411.
  • Arroll, B., and Goodyear-Smith, F., 2004. Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ (clinical research ed.), 328 (7444), 869. doi: 10.1136/bmj.38039.573970.7C.
  • Aso, K., et al., 2020. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis and cartilage, 28 (9), 1245–1254. doi: 10.1016/j.joca.2020.05.010.
  • Atoufi, Z., et al., 2019. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. International journal of biological macromolecules, 139, 1168–1181. doi: 10.1016/j.ijbiomac.2019.08.101.
  • Attia, M.F., et al., 2019. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. The journal of pharmacy and pharmacology, 71 (8), 1185–1198. doi: 10.1111/jphp.13098.
  • Avendaño-Godoy, J., et al., 2023. Evaluation of the effects of gamma radiation sterilization on rhein-loaded biodegradable microparticles for the treatment of osteoarthritis. Journal of pharmaceutical sciences, 112 (3), 837–843. doi: 10.1016/j.xphs.2022.11.003.
  • Aydin, O., et al., 2015. I n vitro and in vivo evaluation of doxycycline‐chondroitin sulfate/PCL microspheres for intraarticular treatment of osteoarthritis. Journal of biomedical materials research. Part B, applied biomaterials, 103 (6), 1238–1248. doi: 10.1002/jbm.b.33303.
  • Bai, L., et al., 2023. Stem cells expansion vector via bioadhesive porous microspheres for accelerating articular cartilage regeneration. Advanced healthcare materials, 13 (3), e2302327. doi: 10.1002/adhm.202302327.
  • Bale, S., et al., 2016. Overview on therapeutic applications of microparticulate drug delivery systems. Critical reviews™ in therapeutic drug carrier systems, 33 (4), 309–361. doi: 10.1615/CritRevTherDrugCarrierSyst.2016015798.
  • Bannuru, R.R., et al., 2015. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. Annals of internal medicine, 162 (1), 46–54. doi: 10.7326/M14-1231.
  • Bodick, N., et al., 2018. Local effects following single and repeat intra-articular injections of triamcinolone acetonide extended-release: results from three nonclinical toxicity studies in dogs. Rheumatology and therapy, 5 (2), 475–498. doi: 10.1007/s40744-018-0125-3.
  • Bodkin, S.G., et al., 2020. Post-traumatic osteoarthritis diagnosed within 5 years following ACL reconstruction. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA, 28 (3), 790–796. doi: 10.1007/s00167-019-05461-y.
  • Brown, S., Kumar, S., and Sharma, B., 2019. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta biomaterialia, 93, 239–257. doi: 10.1016/j.actbio.2019.03.010.
  • Burr, D.B., and Gallant, M.A., 2012. Bone remodelling in osteoarthritis. Nature reviews. Rheumatology, 8 (11), 665–673. doi: 10.1038/nrrheum.2012.130.
  • Cai, L., et al., 2023. Microfluidics-derived microcarrier systems for oral delivery. Biomedical technology, 1, 30–38. doi: 10.1016/j.bmt.2022.11.001.
  • Cao, P., et al., 2020. Pharmacotherapy for knee osteoarthritis: current and emerging therapies. Expert opinion on pharmacotherapy, 21 (7), 797–809. doi: 10.1080/14656566.2020.1732924.
  • Cao, Y., et al., 2021. Intra-articular drug delivery for osteoarthritis treatment. Pharmaceutics, 13 (12), 2166. doi: 10.3390/pharmaceutics13122166.
  • Chandorkar, Y., K, R., and Basu, B., 2018. The foreign body response demystified. ACS biomaterials science & engineering, 5 (1), 19–44. doi: 10.1021/acsbiomaterials.8b00252.
  • Chen, L., et al., 2024. Mitochondrial-oriented injectable hydrogel microspheres maintain homeostasis of chondrocyte metabolism to promote subcellular therapy in osteoarthritis. Research, 7, 0306. doi: 10.34133/research.0306.
  • Chen, L., et al., 2023a. Inflammation‐regulated auto aggregated hydrogel microspheres via anchoring cartilage deep matrix for genes delivery. Advanced functional materials, 33 (51), 2305635. doi: 10.1002/adfm.202305635.
  • Chen, X., et al., 2023b. Transplantation of gelatin microspheres loaded with wharton’s jelly derived mesenchymal stem cells facilitates cartilage repair in mice. Tissue engineering and regenerative medicine, 21 (1), 171–183. doi: 10.1007/s13770-023-00574-5.
  • Chen, Y., et al., 2023c. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment. Acta biomaterialia, 157, 593–608. doi: 10.1016/j.actbio.2022.11.040.
  • Chen, Z., et al., 2018. Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy. Journal of Zhejiang university. Science. B, 19 (12), 910–923. doi: 10.1631/jzus.B1800095.
  • Choi, M.H., et al., 2020. Micro-clotting of platelet-rich plasma upon loading in hydrogel microspheres leads to prolonged protein release and slower microsphere degradation. Polymers, 12 (8), 1712. doi: 10.3390/polym12081712.
  • Coppola, C., et al., 2024. Osteoarthritis: insights into diagnosis, pathophysiology, therapeutic avenues, and the potential of natural extracts. Current issues in molecular biology, 46 (5), 4063–4105. doi: 10.3390/cimb46050251.
  • Crommelin, D.J., and Florence, A.T., 2013. Towards more effective advanced drug delivery systems. International journal of pharmaceutics, 454 (1), 496–511. doi: 10.1016/j.ijpharm.2013.02.020.
  • Dejulius, C.R., et al., 2021. Recent advances in clinical translation of intra‐articular osteoarthritis drug delivery systems. Advanced therapeutics, 4 (1), 2000088. doi: 10.1002/adtp.202000088.
  • Dhanabalan, K.M., Gupta, V.K., and Agarwal, R., 2020. Rapamycin-PLGA microspheres induce autophagy and prevent senescence in chondrocytes and exhibit long in vivo residence. Biomaterials science, 8 (8), 4308–4321. doi: 10.1039/D0BM00596G.
  • DI Francesco, M., et al., 2022. Management of osteoarthritis: from drug molecules to nano/micromedicines. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 14 (3), e1780. doi: 10.1002/wnan.1780.
  • Divya, M., Vijayakumar, S., and Chen, J., 2023. A short review on chondroitin sulphate and its based nanomaterials for bone repair and bone remodelling applications. Journal of composites science, 8 (1), 6. doi: 10.3390/jcs8010006.
  • Elsaid, K.A., et al., 2016. Intra-articular interleukin-1 receptor antagonist (IL1-ra) microspheres for posttraumatic osteoarthritis: in vitro biological activity and in vivo disease modifying effect. Journal of experimental orthopaedics, 3 (1), 18. doi: 10.1186/s40634-016-0054-4.
  • Fan, M., et al., 2017. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Materials science & engineering. C, materials for biological applications, 71, 67–74. doi: 10.1016/j.msec.2016.09.068.
  • Fang, W., et al., 2022. Dexamethasone microspheres and celecoxib microcrystals loaded into injectable gels for enhanced knee osteoarthritis therapy. International journal of pharmaceutics, 622, 121802. doi: 10.1016/j.ijpharm.2022.121802.
  • Fonsi, M., et al., 2020. Intra-articular hyaluronic acid and chondroitin sulfate: pharmacokinetic investigation in osteoarthritic rat models. Current therapeutic research, clinical and experimental, 92, 100573. doi: 10.1016/j.curtheres.2019.100573.
  • Gómez-Gaete, C., et al., 2017. Development, characterization and in vitro evaluation of biodegradable rhein-loaded microparticles for treatment of osteoarthritis. European journal of pharmaceutical sciences: official journal of the european federation for pharmaceutical sciences, 96, 390–397. doi: 10.1016/j.ejps.2016.10.010.
  • Grol, M.W., and Lee, B.H., 2018. Gene therapy for repair and regeneration of bone and cartilage. Current opinion in pharmacology, 40, 59–66. doi: 10.1016/j.coph.2018.03.005.
  • Guo, Y.-H., et al., 2017. Effects of ginsenoside Rg1-loaded alginate-chitosan microspheres on human bone marrow stromal cells. Bioscience reports, 37 (3), BSR20160566. doi: 10.1042/BSR20160566.
  • Hamilton, M., et al., 2023. Controlled-Release Hydrogel Microspheres to Deliver Multipotent Stem Cells for Treatment of Knee Osteoarthritis. Bioengineering, 10 (11), 1315. doi: 10.3390/bioengineering10111315.
  • Hamilton, M., et al., 2022. An injectable intra-articular delivery vehicle for multipotent stromal cells in the treatment of osteoarthritis. Osteoarthritis and cartilage, 30, S421–S422. doi: 10.1016/j.joca.2022.02.573.
  • Han, Y., et al., 2021. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioactive materials, 6 (10), 3596–3607. doi: 10.1016/j.bioactmat.2021.03.022.
  • Han, Z., et al., 2022. Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials, 285, 121545. doi: 10.1016/j.biomaterials.2022.121545.
  • He, Y., et al., 2022. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis. Acta biomaterialia, 151, 512–527. doi: 10.1016/j.actbio.2022.07.052.
  • Hu, H.-Y., et al., 2015. DOTAM derivatives as active cartilage-targeting drug carriers for the treatment of osteoarthritis. Bioconjugate chemistry, 26 (3), 383–388. doi: 10.1021/bc500557s.
  • Huang, H., et al., 2022. Intra-articular drug delivery systems for osteoarthritis therapy: Shifting from sustained release to enhancing penetration into cartilage. Drug delivery, 29 (1), 767–791. doi: 10.1080/10717544.2022.2048130.
  • Hummer, C.D., et al., 2020. High molecular weight Intraarticular hyaluronic acid for the treatment of knee osteoarthritis: a network meta-analysis. BMC musculoskeletal disorders, 21 (1), 702. doi: 10.1186/s12891-020-03729-w.
  • Jaiswal, H., et al., 2023. Aceclofenac loaded microspheres: Formulation and evaluation of novel preprogrammed drug delivery for the treatment of arthritis. Intelligent pharmacy, 2 (1), 69–82. doi: 10.1016/j.ipha.2023.10.010.
  • James, S.L., et al., 2018. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The. Lancet, 392 (10159), 1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
  • Janssen, M., et al., 2014. Drugs and polymers for delivery systems in OA joints: clinical needs and opportunities. Polymers, 6 (3), 799–819. doi: 10.3390/polym6030799.
  • Janssen, M., et al., 2016. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection. Journal of controlled release: official journal of the controlled release society, 244 (Pt A), 30–40. doi: 10.1016/j.jconrel.2016.11.003.
  • Ji, X., and Zhang, H., 2019. Current strategies for the treatment of early stage osteoarthritis. Frontiers in mechanical engineering, 5, 57. doi: 10.3389/fmech.2019.00057.
  • Jin, J., et al., 2022. Arbutin-modified microspheres prevent osteoarthritis progression by mobilizing local anti-inflammatory and antioxidant responses. Materials today. Bio, 16, 100370. doi: 10.1016/j.mtbio.2022.100370.
  • Kardos, D., et al., 2019. Investigation of cytokine changes in osteoarthritic knee joint tissues in response to hyperacute serum treatment. Cells, 8 (8), 824. doi: 10.3390/cells8080824.
  • Kaur, M., Sharma, S., and Sinha, V., 2017. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect. Materials science & engineering. C, materials for biological applications, 72, 492–500. doi: 10.1016/j.msec.2016.11.092.
  • Kawadkar, J., and Chauhan, M.K., 2012. Intra-articular delivery of genipin cross-linked chitosan microspheres of flurbiprofen: preparation, characterization, in vitro and in vivo studies. European journal of pharmaceutics and biopharmaceutics: official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.V, 81 (3), 563–572. doi: 10.1016/j.ejpb.2012.04.018.
  • Kong, D., et al., 2020. Preparation of BMP-2 loaded MPEG-PCL microspheres and evaluation of their bone repair properties. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 130, 110516. doi: 10.1016/j.biopha.2020.110516.
  • Kou, L., et al., 2019. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug delivery, 26 (1), 870–885. doi: 10.1080/10717544.2019.1660434.
  • Kubo, M., et al., 2009. Chondroitin sulfate for the treatment of hip and knee osteoarthritis: current status and future trends. Life sciences, 85 (13–14), 477–483. doi: 10.1016/j.lfs.2009.08.005.
  • Kumar, S., and Sharma, B., 2020. Leveraging electrostatic interactions for drug delivery to the joint. Bioelectricity, 2 (2), 82–100. doi: 10.1089/bioe.2020.0014.
  • Lee, A.S., et al., 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene, 527 (2), 440–447. doi: 10.1016/j.gene.2013.05.069.
  • Lei, Y., et al., 2021. Stem cell‐recruiting injectable microgels for repairing osteoarthritis. Advanced functional materials, 31 (48), 2105084. doi: 10.1002/adfm.202105084.
  • Lei, Y., et al., 2022. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Science advances, 8 (5), eabl6449. doi: 10.1126/sciadv.abl6449.
  • Lengert, E., et al., 2021. Novel formulation of glucocorticoid based on silver alginate microcapsules for intraarticular drug delivery. Materials letters, 288, 129339. doi: 10.1016/j.matlet.2021.129339.
  • L.I., B., L.I.U., Z., Yang., et al., 2017. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Materials science & engineering. C, materials for biological applications, 70 (Pt 2), 1200–1205. doi: 10.1016/j.msec.2016.03.040.
  • L.I., B., Wang., et al., 2022. Injectable “nano-micron” combined gene-hydrogel microspheres for local treatment of osteoarthritis. NPG asia materials, 14 (1), doi: 10.1038/s41427-021-00351-7.
  • Li, G., et al., 2013. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis research & therapy, 15 (6), 223. doi: 10.1186/ar4405.
  • L.I., J., Liu., et al., 2021. Intra-articular injection of loaded sPL sustained-release microspheres inhibits osteoarthritis and promotes cartilaginous repairs. Journal of orthopaedic surgery and research, 16 (1), 646. doi: 10.1186/s13018-021-02777-9.
  • Li, J., et al., 2023a. Targeted and responsive biomaterials in osteoarthritis. Theranostics, 13 (3), 931–954. doi: 10.7150/thno.78639.
  • L.I., W., Lin., et al., 2019. Bevacizumab tested for treatment of knee osteoarthritis via inhibition of synovial vascular hyperplasia in rabbits. Journal of orthopaedic translation, 19, 38–46. doi: 10.1016/j.jot.2019.04.002.
  • L.I., X., L.I., X., Yang., et al., 2023b. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small, 19 (17), e2207211. doi: 10.1002/smll.202207211.
  • L.I., Z., Feng., et al., 2023c. High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis. Asian journal of pharmaceutical sciences, 18 (4), 100830. doi: 10.1016/j.ajps.2023.100830.
  • Liang, Y., et al., 2021. Study on the slow-release mometasone furoate injection of PLGA for the treatment of knee arthritis. Current drug delivery, 18 (3), 357–368. doi: 10.2174/1567201817666200917124759.
  • Lin, F., et al., 2021a. Charge‐guided micro/nano‐hydrogel microsphere for penetrating cartilage matrix. Advanced functional materials, 31 (49), 2107678. doi: 10.1002/adfm.202107678.
  • Lin, J., et al., 2024. Research progress on injectable microspheres as new strategies for the treatment of osteoarthritis through promotion of cartilage repair. Advanced functional materials, 34 (10), 2400585. doi: 10.1002/adfm.202400585.
  • Lin, J., et al., 2021b. Dual delivery of TGF-β3 and ghrelin in microsphere/hydrogel systems for cartilage regeneration. Molecules, 26 (19), 5732. doi: 10.3390/molecules26195732.
  • Ma, L., et al., 2022. Knee osteoarthritis therapy: recent advances in intra-articular drug delivery systems. Drug design, development and therapy, 16, 1311–1347. doi: 10.2147/DDDT.S357386.
  • Madry, H., and Cucchiarini, M., 2016. Gene therapy for human osteoarthritis: principles and clinical translation. Expert opinion on biological therapy, 16 (3), 331–346. doi: 10.1517/14712598.2016.1124084.
  • Mao, L., et al., 2021. Targeted treatment for osteoarthritis: drugs and delivery system. Drug delivery, 28 (1), 1861–1876. doi: 10.1080/10717544.2021.1971798.
  • Martel-Pelletier, J., et al., 2008. Cartilage in normal and osteoarthritis conditions. Best practice & research. Clinical rheumatology, 22 (2), 351–384. doi: 10.1016/j.berh.2008.02.001.
  • Mcalindon, T.E., et al., 2014. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis and cartilage, 22 (3), 363–388. doi: 10.1016/j.joca.2014.01.003.
  • Meng, Z., and Huang, R., 2018. Topical treatment of degenerative knee osteoarthritis. The American journal of the medical sciences, 355 (1), 6–12. doi: 10.1016/j.amjms.2017.06.006.
  • Miao, K., et al., 2024. Microenvironment-responsive bilayer hydrogel microspheres with gelatin-shell for osteoarthritis treatment. International journal of biological macromolecules, 261 (Pt 2), 129862. doi: 10.1016/j.ijbiomac.2024.129862.
  • Migliore, A., et al., 2020. The perspectives of intra-articular therapy in the management of osteoarthritis. Expert opinion on drug delivery, 17 (9), 1213–1226. doi: 10.1080/17425247.2020.1783234.
  • Migliore, A., and Procopio, S., 2015. Effectiveness and utility of hyaluronic acid in osteoarthritis. Clinical cases in mineral and bone metabolism: the official journal of the Italian society of osteoporosis, mineral metabolism, and skeletal diseases, 12 (1), 31–33. doi: 10.11138/ccmbm/2015.12.1.031.
  • Mobasheri, A., 2013. The future of osteoarthritis therapeutics: emerging biological therapy. Current rheumatology reports, 15 (12), 385. doi: 10.1007/s11926-013-0385-4.
  • Molnar, V., et al., 2021. Cytokines and chemokines involved in osteoarthritis pathogenesis. International journal of molecular sciences, 22 (17), 9208. doi: 10.3390/ijms22179208.
  • Mountziaris, P.M., Kramer, P.R., and Mikos, A.G., 2009. Emerging intra-articular drug delivery systems for the temporomandibular joint. Methods, 47 (2), 134–140. doi: 10.1016/j.ymeth.2008.09.001.
  • Musumeci, T., et al., 2020. Development and biocompatibility assessments of poly (3-hydroxybutyrate-co-ε-caprolactone) microparticles for diclofenac sodium delivery. Journal of drug delivery science and technology, 60, 102081. doi: 10.1016/j.jddst.2020.102081.
  • Nativel, F., et al., 2023. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Materials today. Bio, 19, 100581. doi: 10.1016/j.mtbio.2023.100581.
  • Nguyen, C., and Rannou, F., 2017. The safety of intra-articular injections for the treatment of knee osteoarthritis: a critical narrative review. Expert opinion on drug safety, 16 (8), 897–902. doi: 10.1080/14740338.2017.1344211.
  • Park, E., et al., 2020. Bioresponsive microspheres for on‐demand delivery of anti‐inflammatory cytokines for articular cartilage repair. Journal of biomedical materials research. Part A, 108 (3), 722–733. doi: 10.1002/jbm.a.36852.
  • Pelletier, J.-P., et al., 2016. Efficacy and safety of oral NSAIDs and analgesics in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Seminars in arthritis and rheumatism, 45 (4 Suppl), S22–S27. doi: 10.1016/j.semarthrit.2015.11.009.
  • Pirollo, K.F., and Chang, E.H., 2008. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends in biotechnology, 26 (10), 552–558. doi: 10.1016/j.tibtech.2008.06.007.
  • Puppi, D., et al., 2010. Polymeric materials for bone and cartilage repair. Progress in polymer science, 35 (4), 403–440. doi: 10.1016/j.progpolymsci.2010.01.006.
  • Qiu, S., et al., Preparation of injectable double-layer microspheres for the long-term treatment of osteoarthritis. Available at SSRN 4233584.
  • Rahimi, M., et al., 2021. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta biomaterialia, 123, 31–50. doi: 10.1016/j.actbio.2021.01.003.
  • Rodriguez-Merchan, E., 2018. Topical therapies for knee osteoarthritis. Postgraduate medicine, 130 (7), 607–612. doi: 10.1080/00325481.2018.1505182.
  • Rudnik-Jansen, I., et al., 2019. Intra-articular injection of triamcinolone acetonide releasing biomaterial microspheres inhibits pain and inflammation in an acute arthritis model. Drug delivery, 26 (1), 226–236. doi: 10.1080/10717544.2019.1568625.
  • Ryan, S.M., et al., 2013. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. Journal of controlled release: official journal of the controlled release society, 167 (2), 120–129. doi: 10.1016/j.jconrel.2013.01.027.
  • Sadtler, K., et al., 2016. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nature reviews materials, 1 (7), 1–17. doi: 10.1038/natrevmats.2016.40.
  • Sahil, K., et al., 2011. Microsphere: a review. International Journal of Pharmaceutical Chemistry and Analysis, 1, 1184–1198.
  • Salgado, C., et al., 2020. Nano wet milled celecoxib extended release microparticles for local management of chronic inflammation. International journal of pharmaceutics, 589, 119783. doi: 10.1016/j.ijpharm.2020.119783.
  • Sangsuwan, R., et al., 2022. Intra-articular injection of flavopiridol-loaded microparticles for treatment of post-traumatic osteoarthritis. Acta biomaterialia, 149, 347–358. doi: 10.1016/j.actbio.2022.06.042.
  • Sharma, L., 2021. Osteoarthritis of the knee. The new England journal of medicine, 384 (1), 51–59. doi: 10.1056/NEJMcp1903768.
  • Sheokand, B., et al., 2023. Natural polymers used in the dressing materials for wound healing: Past, present and future. Journal of polymer science, 61 (14), 1389–1414. doi: 10.1002/pol.20220734.
  • Stefani, R.M., et al., 2020. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta biomaterialia, 102, 326–340. doi: 10.1016/j.actbio.2019.11.052.
  • Sulaiman, S.B., et al., 2021. Type II collagen-conjugated mesenchymal stem cells micromass for articular tissue targeting. Biomedicines, 9 (8), 880. doi: 10.3390/biomedicines9080880.
  • Sun, H., et al., 2022a. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials, 280, 121243. doi: 10.1016/j.biomaterials.2021.121243.
  • Sun, Z., et al., 2022b. Intra-articular injection PLGA blends sustained-release microspheres loaded with meloxicam: preparation, optimization, evaluation in vitro and in vivo. Drug delivery, 29 (1), 3317–3327. doi: 10.1080/10717544.2022.2144545.
  • Tahriri, M., et al., 2018. Evaluation of the in vitro biodegradation and biological behavior of poly (lactic-co-glycolic acid)/nano-fluorhydroxyapatite composite microsphere-sintered scaffold for bone tissue engineering. Journal of bioactive and compatible polymers, 33 (2), 146–159. doi: 10.1177/0883911517720814.
  • Tellegen, A., et al., 2023. Sustained release of locally delivered celecoxib provides pain relief for osteoarthritis: a proof of concept in dog patients. Osteoarthritis and cartilage, 31 (3), 351–362. doi: 10.1016/j.joca.2022.11.008.
  • Tellier, L.E., et al., 2018. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis. Biomaterials science, 6 (5), 1159–1167. doi: 10.1039/C8BM00010G.
  • Testa, G., et al., 2021. Intra-articular injections in knee osteoarthritis: A review of literature. Journal of functional morphology and kinesiology, 6 (1), 15. doi: 10.3390/jfmk6010015.
  • Vayas, R., et al., 2021. Injectable scaffold for bone marrow stem cells and bone morphogenetic protein-2 to repair cartilage. Cartilage, 12 (3), 293–306. doi: 10.1177/1947603519841682.
  • Vincent, T.L., and Miller, R.E., 2024. Molecular pathogenesis of OA pain: Past, present, and future. Osteoarthritis and cartilage, 32 (4), 398–405. doi: 10.1016/j.joca.2024.01.005.
  • Wang, T., et al., 2022. Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials, 286, 121611. doi: 10.1016/j.biomaterials.2022.121611.
  • Wang, Y., et al., 2023. Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration. ACS applied materials & interfaces, 15 (17), 20661–20676. doi: 10.1021/acsami.3c00192.
  • Wehling, P., et al., 2017. Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Therapeutic advances in musculoskeletal disease, 9 (8), 183–196. doi: 10.1177/1759720X17712695.
  • Wijerathne, H.S., et al., 2020. Effect of nano-hydroxyapatite on protein adsorption and cell adhesion of poly (lactic acid)/nano-hydroxyapatite composite microspheres. SN applied sciences, 2 (4), 1–8. doi: 10.1007/s42452-020-2531-8.
  • Wongrakpanich, A., et al., 2023. Ketorolac-loaded PLGA-/PLA-based microparticles stabilized by hyaluronic acid: effects of formulation composition and emulsification technique on particle characteristics and drug release behaviors. Polymers, 15 (2), 266. doi: 10.3390/polym15020266.
  • Wu, L., et al., 2023a. CD146-positive adipose-derived stem cells subpopulation enriched by albumin magnetic sphere ameliorates knee osteoarthritis pain and promotes cartilage repair. Journal of orthopaedic surgery and research, 18 (1), 969. doi: 10.1186/s13018-023-04434-9.
  • Wu, S., et al., 2023b. Hydrogels for bone organoid construction: From a materiobiological perspective. Journal of materials science & technology, 136, 21–31. doi: 10.1016/j.jmst.2022.07.008.
  • Xiao, P., et al., 2024. Reprogramming macrophages via immune cell mobilized hydrogel microspheres for osteoarthritis treatments. Bioactive materials, 32, 242–259. doi: 10.1016/j.bioactmat.2023.09.010.
  • Xiong, W., et al., 2024. In Situ Remodeling of Efferocytosis via Lesion‐Localized Microspheres to Reverse Cartilage Senescence. Advanced science, 11 (19), 2400345. doi: 10.1002/advs.202400345.
  • Yang, J., et al., 2020a. Ball‐bearing‐inspired polyampholyte‐modified microspheres as bio‐lubricants attenuate osteoarthritis. Small, 16 (44), 2004519. doi: 10.1002/smll.202004519.
  • Yang, L., et al., 2020b. Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale, 12 (32), 17093–17102. doi: 10.1039/d0nr04013d.
  • Ye, J., et al., 2023. Intra-articular histone deacetylase inhibitor microcarrier delivery to reduce osteoarthritis. Nano letters, 23 (23), 10832–10840. doi: 10.1021/acs.nanolett.3c03037.
  • Yeung, P., et al., 2019a. Collagen microsphere-based 3D culture system for human osteoarthritis chondrocytes (hOACs). Scientific reports, 9 (1), 12453. doi: 10.1038/s41598-019-47946-3.
  • Yeung, P., et al., 2019b. Microencapsulation of human osteoarthritis chondrocytes in collagen microsphere-an in vitro model for osteoarthritis studies. Osteoarthritis and cartilage, 27, S426. doi: 10.1016/j.joca.2019.02.445.
  • Yu, H., et al., 2022. Nanoarchitectonics of cartilage-targeting hydrogel microspheres with reactive oxygen species responsiveness for the repair of osteoarthritis. ACS applied materials & interfaces, 14 (36), 40711–40723. doi: 10.1021/acsami.2c12703.
  • Yu, H., et al., 2023. Intracellular delivery of itaconate by metal–organic framework-anchored hydrogel microspheres for osteoarthritis therapy. Pharmaceutics, 15 (3), 724. doi: 10.3390/pharmaceutics15030724.
  • Yuan, F.-Z., et al., 2021. Fabrication of injectable chitosan-chondroitin sulfate hydrogel embedding kartogenin-loaded microspheres as an ultrasound-triggered drug delivery system for cartilage tissue engineering. Pharmaceutics, 13 (9), 1487. doi: 10.3390/pharmaceutics13091487.
  • Zhang, X., et al., 2020. Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulated chitosan microsphere attenuates osteoarthritis. Biomaterials, 232, 119724. doi: 10.1016/j.biomaterials.2019.119724.
  • Zhou, T., et al., 2023. Hypoxia and matrix metalloproteinase 13‐responsive hydrogel microspheres alleviate osteoarthritis progression in vivo. Small), 20 (19), e2308599. doi: 10.1002/smll.202308599.
  • Zhu, D., et al., 2021. Hyaluronic acid/parecoxib-loaded PLGA microspheres for therapy of temporomandibular disorders. Current drug delivery, 18 (2), 234–245. doi: 10.2174/1567201817999200817151048.
  • Zou, X., et al., 2024. p75NTR antibody-conjugated microspheres: an approach to guided tissue regeneration by selective recruitment of endogenous periodontal ligament cells. Frontiers in bioengineering and biotechnology, 12, 1338029. doi: 10.3389/fbioe.2024.1338029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.